# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple from functools import partial import numpy as np import pytest import torch from skimage.metrics import peak_signal_noise_ratio from pytorch_lightning.metrics.functional import psnr from pytorch_lightning.metrics.regression import PSNR from tests.metrics.utils import BATCH_SIZE, MetricTester, NUM_BATCHES torch.manual_seed(42) Input = namedtuple('Input', ["preds", "target"]) _input_size = (NUM_BATCHES, BATCH_SIZE, 32, 32) _inputs = [ Input( preds=torch.randint(n_cls_pred, _input_size, dtype=torch.float), target=torch.randint(n_cls_target, _input_size, dtype=torch.float), ) for n_cls_pred, n_cls_target in [(10, 10), (5, 10), (10, 5)] ] def _to_sk_peak_signal_noise_ratio_inputs(value, dim): value = value.numpy() batches = value[None] if value.ndim == len(_input_size) - 1 else value if dim is None: return [batches] num_dims = np.size(dim) if not num_dims: return batches inputs = [] for batch in batches: batch = np.moveaxis(batch, dim, np.arange(-num_dims, 0)) psnr_input_shape = batch.shape[-num_dims:] inputs.extend(batch.reshape(-1, *psnr_input_shape)) return inputs def _sk_psnr(preds, target, data_range, reduction, dim): sk_preds_lists = _to_sk_peak_signal_noise_ratio_inputs(preds, dim=dim) sk_target_lists = _to_sk_peak_signal_noise_ratio_inputs(target, dim=dim) np_reduce_map = {"elementwise_mean": np.mean, "none": np.array, "sum": np.sum} return np_reduce_map[reduction]([ peak_signal_noise_ratio(sk_target, sk_preds, data_range=data_range) for sk_target, sk_preds in zip(sk_target_lists, sk_preds_lists) ]) def _base_e_sk_psnr(preds, target, data_range, reduction, dim): return _sk_psnr(preds, target, data_range, reduction, dim) * np.log(10) @pytest.mark.parametrize( "preds, target, data_range, reduction, dim", [ (_inputs[0].preds, _inputs[0].target, 10, "elementwise_mean", None), (_inputs[1].preds, _inputs[1].target, 10, "elementwise_mean", None), (_inputs[2].preds, _inputs[2].target, 5, "elementwise_mean", None), (_inputs[2].preds, _inputs[2].target, 5, "elementwise_mean", 1), (_inputs[2].preds, _inputs[2].target, 5, "elementwise_mean", (1, 2)), (_inputs[2].preds, _inputs[2].target, 5, "sum", (1, 2)), ], ) @pytest.mark.parametrize( "base, sk_metric", [ (10.0, _sk_psnr), (2.718281828459045, _base_e_sk_psnr), ], ) class TestPSNR(MetricTester): @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) def test_psnr(self, preds, target, data_range, base, reduction, dim, sk_metric, ddp, dist_sync_on_step): _args = {"data_range": data_range, "base": base, "reduction": reduction, "dim": dim} self.run_class_metric_test( ddp, preds, target, PSNR, partial(sk_metric, data_range=data_range, reduction=reduction, dim=dim), metric_args=_args, dist_sync_on_step=dist_sync_on_step, ) def test_psnr_functional(self, preds, target, sk_metric, data_range, base, reduction, dim): _args = {"data_range": data_range, "base": base, "reduction": reduction, "dim": dim} self.run_functional_metric_test( preds, target, psnr, partial(sk_metric, data_range=data_range, reduction=reduction, dim=dim), metric_args=_args, ) @pytest.mark.parametrize("reduction", ["none", "sum"]) def test_reduction_for_dim_none(reduction): match = f"The `reduction={reduction}` will not have any effect when `dim` is None." with pytest.warns(UserWarning, match=match): PSNR(reduction=reduction, dim=None) with pytest.warns(UserWarning, match=match): psnr(_inputs[0].preds, _inputs[0].target, reduction=reduction, dim=None) def test_missing_data_range(): with pytest.raises(ValueError): PSNR(data_range=None, dim=0) with pytest.raises(ValueError): psnr(_inputs[0].preds, _inputs[0].target, data_range=None, dim=0)