2022-11-08 12:55:31 +00:00
|
|
|
import torch
|
|
|
|
|
|
|
|
import lightning as L
|
|
|
|
from lightning.app.components import LiteMultiNode
|
|
|
|
from lightning.lite import LightningLite
|
|
|
|
|
|
|
|
|
|
|
|
class LitePyTorchDistributed(L.LightningWork):
|
|
|
|
@staticmethod
|
|
|
|
def run():
|
|
|
|
# 1. Create LightningLite.
|
2022-11-10 12:42:19 +00:00
|
|
|
lite = LightningLite(strategy="ddp", precision=16)
|
2022-11-08 12:55:31 +00:00
|
|
|
|
|
|
|
# 2. Prepare distributed model and optimizer.
|
|
|
|
model = torch.nn.Linear(32, 2)
|
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
|
|
|
model, optimizer = lite.setup(model, optimizer)
|
|
|
|
criterion = torch.nn.MSELoss()
|
|
|
|
|
|
|
|
# 3. Train the model for 50 steps.
|
|
|
|
for step in range(50):
|
|
|
|
model.zero_grad()
|
|
|
|
x = torch.randn(64, 32).to(lite.device)
|
|
|
|
output = model(x)
|
|
|
|
loss = criterion(output, torch.ones_like(output))
|
|
|
|
print(f"global_rank: {lite.global_rank} step: {step} loss: {loss}")
|
|
|
|
lite.backward(loss)
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
|
|
|
|
# Run over 2 nodes of 4 x V100
|
|
|
|
app = L.LightningApp(
|
|
|
|
LiteMultiNode(
|
|
|
|
LitePyTorchDistributed,
|
|
|
|
cloud_compute=L.CloudCompute("gpu-fast-multi"), # 4 x V100
|
|
|
|
num_nodes=2,
|
|
|
|
)
|
|
|
|
)
|