lightning/examples/app_multi_node/train_lite.py

39 lines
1.1 KiB
Python
Raw Normal View History

import torch
import lightning as L
from lightning.app.components import LiteMultiNode
from lightning.lite import LightningLite
class LitePyTorchDistributed(L.LightningWork):
@staticmethod
def run():
# 1. Create LightningLite.
lite = LightningLite(strategy="ddp", precision="bf16")
# 2. Prepare distributed model and optimizer.
model = torch.nn.Linear(32, 2)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
model, optimizer = lite.setup(model, optimizer)
criterion = torch.nn.MSELoss()
# 3. Train the model for 50 steps.
for step in range(50):
model.zero_grad()
x = torch.randn(64, 32).to(lite.device)
output = model(x)
loss = criterion(output, torch.ones_like(output))
print(f"global_rank: {lite.global_rank} step: {step} loss: {loss}")
lite.backward(loss)
optimizer.step()
# Run over 2 nodes of 4 x V100
app = L.LightningApp(
LiteMultiNode(
LitePyTorchDistributed,
cloud_compute=L.CloudCompute("gpu-fast-multi"), # 4 x V100
num_nodes=2,
)
)