2021-02-08 10:52:02 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
from pytorch_lightning import Trainer
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers.advanced_models import BasicGAN, ParityModuleMNIST, ParityModuleRNN
|
2021-02-08 10:52:02 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel
|
|
|
|
from tests.helpers.datamodules import ClassifDataModule, RegressDataModule
|
|
|
|
from tests.helpers.simple_models import ClassificationModel, RegressionModel
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
2021-07-26 11:37:35 +00:00
|
|
|
"data_class,model_class",
|
|
|
|
[
|
2021-02-08 10:52:02 +00:00
|
|
|
(None, BoringModel),
|
|
|
|
(None, BasicGAN),
|
|
|
|
(None, ParityModuleRNN),
|
|
|
|
(None, ParityModuleMNIST),
|
|
|
|
(ClassifDataModule, ClassificationModel),
|
|
|
|
(RegressDataModule, RegressionModel),
|
2021-07-26 11:37:35 +00:00
|
|
|
],
|
2021-02-08 10:52:02 +00:00
|
|
|
)
|
|
|
|
def test_models(tmpdir, data_class, model_class):
|
|
|
|
"""Test simple models"""
|
|
|
|
dm = data_class() if data_class else data_class
|
|
|
|
model = model_class()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1)
|
|
|
|
|
|
|
|
trainer.fit(model, datamodule=dm)
|
|
|
|
trainer.test(model, datamodule=dm)
|
|
|
|
|
|
|
|
model.to_torchscript()
|
|
|
|
if data_class:
|
2021-07-26 11:37:35 +00:00
|
|
|
model.to_onnx(os.path.join(tmpdir, "my-model.onnx"), input_sample=dm.sample)
|