lightning/tests/callbacks/test_rich_progress_bar.py

403 lines
14 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from unittest import mock
from unittest.mock import DEFAULT, Mock
import pytest
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ProgressBarBase, RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset
from tests.helpers.runif import RunIf
@RunIf(rich=True)
def test_rich_progress_bar_callback():
trainer = Trainer(callbacks=RichProgressBar())
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
assert len(progress_bars) == 1
assert isinstance(trainer.progress_bar_callback, RichProgressBar)
2021-09-22 15:11:37 +00:00
@RunIf(rich=True)
def test_rich_progress_bar_refresh_rate_enabled():
progress_bar = RichProgressBar(refresh_rate=1)
2021-09-22 15:11:37 +00:00
assert progress_bar.is_enabled
assert not progress_bar.is_disabled
progress_bar = RichProgressBar(refresh_rate=0)
2021-09-22 15:11:37 +00:00
assert not progress_bar.is_enabled
assert progress_bar.is_disabled
@RunIf(rich=True)
@pytest.mark.parametrize("dataset", [RandomDataset(32, 64), RandomIterableDataset(32, 64)])
def test_rich_progress_bar(tmpdir, dataset):
class TestModel(BoringModel):
def train_dataloader(self):
return DataLoader(dataset=dataset)
def val_dataloader(self):
return DataLoader(dataset=dataset)
def test_dataloader(self):
return DataLoader(dataset=dataset)
def predict_dataloader(self):
return DataLoader(dataset=dataset)
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
limit_predict_batches=1,
max_epochs=1,
callbacks=RichProgressBar(),
)
model = TestModel()
with mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update") as mocked:
trainer.fit(model)
# 3 for main progress bar and 1 for val progress bar
assert mocked.call_count == 4
with mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update") as mocked:
trainer.validate(model)
assert mocked.call_count == 1
with mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update") as mocked:
trainer.test(model)
assert mocked.call_count == 1
with mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update") as mocked:
trainer.predict(model)
assert mocked.call_count == 1
def test_rich_progress_bar_import_error(monkeypatch):
import pytorch_lightning.callbacks.progress.rich_progress as imports
monkeypatch.setattr(imports, "_RICH_AVAILABLE", False)
with pytest.raises(ModuleNotFoundError, match="`RichProgressBar` requires `rich` >= 10.2.2."):
RichProgressBar()
@RunIf(rich=True)
def test_rich_progress_bar_custom_theme(tmpdir):
"""Test to ensure that custom theme styles are used."""
with mock.patch.multiple(
"pytorch_lightning.callbacks.progress.rich_progress",
CustomBarColumn=DEFAULT,
BatchesProcessedColumn=DEFAULT,
CustomTimeColumn=DEFAULT,
ProcessingSpeedColumn=DEFAULT,
) as mocks:
theme = RichProgressBarTheme()
progress_bar = RichProgressBar(theme=theme)
progress_bar.on_train_start(Trainer(tmpdir), BoringModel())
assert progress_bar.theme == theme
args, kwargs = mocks["CustomBarColumn"].call_args
assert kwargs["complete_style"] == theme.progress_bar
assert kwargs["finished_style"] == theme.progress_bar_finished
args, kwargs = mocks["BatchesProcessedColumn"].call_args
assert kwargs["style"] == theme.batch_progress
args, kwargs = mocks["CustomTimeColumn"].call_args
assert kwargs["style"] == theme.time
args, kwargs = mocks["ProcessingSpeedColumn"].call_args
assert kwargs["style"] == theme.processing_speed
@RunIf(rich=True)
def test_rich_progress_bar_keyboard_interrupt(tmpdir):
"""Test to ensure that when the user keyboard interrupts, we close the progress bar."""
class TestModel(BoringModel):
def on_train_start(self) -> None:
raise KeyboardInterrupt
model = TestModel()
with mock.patch(
"pytorch_lightning.callbacks.progress.rich_progress.Progress.stop", autospec=True
) as mock_progress_stop:
progress_bar = RichProgressBar()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
callbacks=progress_bar,
)
trainer.fit(model)
mock_progress_stop.assert_called_once()
@RunIf(rich=True)
def test_rich_progress_bar_configure_columns():
from rich.progress import TextColumn
custom_column = TextColumn("[progress.description]Testing Rich!")
class CustomRichProgressBar(RichProgressBar):
def configure_columns(self, trainer):
return [custom_column]
progress_bar = CustomRichProgressBar()
progress_bar._init_progress(Mock())
assert progress_bar.progress.columns[0] == custom_column
assert len(progress_bar.progress.columns) == 2
@RunIf(rich=True)
@pytest.mark.parametrize(("leave", "reset_call_count"), ([(True, 0), (False, 5)]))
def test_rich_progress_bar_leave(tmpdir, leave, reset_call_count):
# Calling `reset` means continuing on the same progress bar.
model = BoringModel()
with mock.patch(
"pytorch_lightning.callbacks.progress.rich_progress.Progress.reset", autospec=True
) as mock_progress_reset:
progress_bar = RichProgressBar(leave=leave)
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
limit_train_batches=1,
max_epochs=6,
callbacks=progress_bar,
)
trainer.fit(model)
assert mock_progress_reset.call_count == reset_call_count
@RunIf(rich=True)
@mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update")
def test_rich_progress_bar_refresh_rate_disabled(progress_update, tmpdir):
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=4,
callbacks=RichProgressBar(refresh_rate=0),
)
trainer.fit(BoringModel())
assert progress_update.call_count == 0
@RunIf(rich=True)
@pytest.mark.parametrize(
"refresh_rate,train_batches,val_batches,expected_call_count",
[
(3, 6, 6, 4 + 3),
(4, 6, 6, 3 + 3),
(7, 6, 6, 2 + 2),
(1, 2, 3, 5 + 4),
(1, 0, 0, 0 + 0),
(3, 1, 0, 1 + 0),
(3, 1, 1, 1 + 2),
(3, 5, 0, 2 + 0),
(3, 5, 2, 3 + 2),
(6, 5, 2, 2 + 2),
],
)
def test_rich_progress_bar_with_refresh_rate(tmpdir, refresh_rate, train_batches, val_batches, expected_call_count):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
limit_train_batches=train_batches,
limit_val_batches=val_batches,
max_epochs=1,
callbacks=RichProgressBar(refresh_rate=refresh_rate),
)
trainer.progress_bar_callback.on_train_start(trainer, model)
with mock.patch.object(
trainer.progress_bar_callback.progress, "update", wraps=trainer.progress_bar_callback.progress.update
) as progress_update:
trainer.fit(model)
assert progress_update.call_count == expected_call_count
if train_batches > 0:
fit_main_bar = trainer.progress_bar_callback.progress.tasks[0]
assert fit_main_bar.completed == train_batches + val_batches
assert fit_main_bar.total == train_batches + val_batches
assert fit_main_bar.visible
if val_batches > 0:
fit_val_bar = trainer.progress_bar_callback.progress.tasks[1]
assert fit_val_bar.completed == val_batches
assert fit_val_bar.total == val_batches
assert not fit_val_bar.visible
@RunIf(rich=True)
@pytest.mark.parametrize("limit_val_batches", (1, 5))
def test_rich_progress_bar_num_sanity_val_steps(tmpdir, limit_val_batches):
model = BoringModel()
progress_bar = RichProgressBar()
num_sanity_val_steps = 3
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=num_sanity_val_steps,
limit_train_batches=1,
limit_val_batches=limit_val_batches,
max_epochs=1,
callbacks=progress_bar,
)
trainer.fit(model)
assert progress_bar.progress.tasks[0].completed == min(num_sanity_val_steps, limit_val_batches)
assert progress_bar.progress.tasks[0].total == min(num_sanity_val_steps, limit_val_batches)
@RunIf(rich=True)
def test_rich_progress_bar_counter_with_val_check_interval(tmpdir):
"""Test the completed and total counter for rich progress bar when using val_check_interval."""
progress_bar = RichProgressBar()
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
val_check_interval=2,
max_epochs=1,
limit_train_batches=7,
limit_val_batches=4,
callbacks=[progress_bar],
)
trainer.fit(model)
fit_main_progress_bar = progress_bar.progress.tasks[1]
assert fit_main_progress_bar.completed == 7 + 3 * 4
assert fit_main_progress_bar.total == 7 + 3 * 4
fit_val_bar = progress_bar.progress.tasks[2]
assert fit_val_bar.completed == 4
assert fit_val_bar.total == 4
trainer.validate(model)
val_bar = progress_bar.progress.tasks[0]
assert val_bar.completed == 4
assert val_bar.total == 4
@RunIf(rich=True)
@mock.patch("pytorch_lightning.callbacks.progress.rich_progress._detect_light_colab_theme", return_value=True)
def test_rich_progress_bar_colab_light_theme_update(*_):
theme = RichProgressBar().theme
assert theme.description == "black"
assert theme.batch_progress == "black"
assert theme.metrics == "black"
theme = RichProgressBar(theme=RichProgressBarTheme(description="blue", metrics="red")).theme
assert theme.description == "blue"
assert theme.batch_progress == "black"
assert theme.metrics == "red"
@RunIf(rich=True)
def test_rich_progress_bar_metric_display_task_id(tmpdir):
class CustomModel(BoringModel):
def training_step(self, *args, **kwargs):
res = super().training_step(*args, **kwargs)
self.log("train_loss", res["loss"], prog_bar=True)
return res
progress_bar = RichProgressBar()
model = CustomModel()
trainer = Trainer(default_root_dir=tmpdir, callbacks=progress_bar, fast_dev_run=True)
trainer.fit(model)
main_progress_bar_id = progress_bar.main_progress_bar_id
val_progress_bar_id = progress_bar.val_progress_bar_id
rendered = progress_bar.progress.columns[-1]._renderable_cache
for key in ("loss", "v_num", "train_loss"):
assert key in rendered[main_progress_bar_id][1]
assert key not in rendered[val_progress_bar_id][1]
@RunIf(rich=True)
def test_rich_progress_bar_correct_value_epoch_end(tmpdir):
"""Rich counterpart to test_tqdm_progress_bar::test_tqdm_progress_bar_correct_value_epoch_end."""
class MockedProgressBar(RichProgressBar):
calls = defaultdict(list)
def get_metrics(self, trainer, pl_module):
items = super().get_metrics(trainer, model)
del items["v_num"]
del items["loss"]
# this is equivalent to mocking `set_postfix` as this method gets called every time
self.calls[trainer.state.fn].append(
(trainer.state.stage, trainer.current_epoch, trainer.global_step, items)
)
return items
class MyModel(BoringModel):
def training_step(self, batch, batch_idx):
self.log("a", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max)
return super().training_step(batch, batch_idx)
def validation_step(self, batch, batch_idx):
self.log("b", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max)
return super().validation_step(batch, batch_idx)
def test_step(self, batch, batch_idx):
self.log("c", self.global_step, prog_bar=True, on_step=False, on_epoch=True, reduce_fx=max)
return super().test_step(batch, batch_idx)
model = MyModel()
pbar = MockedProgressBar()
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
limit_test_batches=2,
max_epochs=2,
enable_model_summary=False,
enable_checkpointing=False,
log_every_n_steps=1,
callbacks=pbar,
)
trainer.fit(model)
assert pbar.calls["fit"] == [
("sanity_check", 0, 0, {"b": 0}),
("train", 0, 1, {}),
("train", 0, 2, {}),
("validate", 0, 2, {"b": 2}), # validation end
# epoch end over, `on_epoch=True` metrics are computed
("train", 0, 2, {"a": 1, "b": 2}), # training epoch end
("train", 1, 3, {"a": 1, "b": 2}),
("train", 1, 4, {"a": 1, "b": 2}),
("validate", 1, 4, {"a": 1, "b": 4}), # validation end
("train", 1, 4, {"a": 3, "b": 4}), # training epoch end
]
trainer.validate(model, verbose=False)
assert pbar.calls["validate"] == []
trainer.test(model, verbose=False)
assert pbar.calls["test"] == []