2021-08-24 02:40:36 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
from unittest import mock
|
2021-11-01 17:22:53 +00:00
|
|
|
from unittest.mock import DEFAULT, Mock
|
2021-08-24 02:40:36 +00:00
|
|
|
|
|
|
|
import pytest
|
2021-09-29 09:54:30 +00:00
|
|
|
from torch.utils.data import DataLoader
|
2021-08-24 02:40:36 +00:00
|
|
|
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from pytorch_lightning.callbacks import ProgressBarBase, RichProgressBar
|
2021-09-16 21:11:59 +00:00
|
|
|
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
|
2021-09-09 20:53:47 +00:00
|
|
|
from pytorch_lightning.utilities.imports import _RICH_AVAILABLE
|
2021-09-29 09:54:30 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset
|
2021-08-24 02:40:36 +00:00
|
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
|
|
|
def test_rich_progress_bar_callback():
|
|
|
|
trainer = Trainer(callbacks=RichProgressBar())
|
|
|
|
|
|
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
|
|
|
|
|
|
|
|
assert len(progress_bars) == 1
|
|
|
|
assert isinstance(trainer.progress_bar_callback, RichProgressBar)
|
|
|
|
|
|
|
|
|
2021-09-22 15:11:37 +00:00
|
|
|
@RunIf(rich=True)
|
2021-11-19 05:59:57 +00:00
|
|
|
def test_rich_progress_bar_refresh_rate_enabled():
|
|
|
|
progress_bar = RichProgressBar(refresh_rate=1)
|
2021-09-22 15:11:37 +00:00
|
|
|
assert progress_bar.is_enabled
|
|
|
|
assert not progress_bar.is_disabled
|
2021-11-19 05:59:57 +00:00
|
|
|
progress_bar = RichProgressBar(refresh_rate=0)
|
2021-09-22 15:11:37 +00:00
|
|
|
assert not progress_bar.is_enabled
|
|
|
|
assert progress_bar.is_disabled
|
|
|
|
|
|
|
|
|
2021-08-24 02:40:36 +00:00
|
|
|
@RunIf(rich=True)
|
|
|
|
@mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update")
|
2021-09-29 09:54:30 +00:00
|
|
|
@pytest.mark.parametrize("dataset", [RandomDataset(32, 64), RandomIterableDataset(32, 64)])
|
|
|
|
def test_rich_progress_bar(progress_update, tmpdir, dataset):
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def train_dataloader(self):
|
|
|
|
return DataLoader(dataset=dataset)
|
|
|
|
|
|
|
|
def val_dataloader(self):
|
|
|
|
return DataLoader(dataset=dataset)
|
|
|
|
|
|
|
|
def test_dataloader(self):
|
|
|
|
return DataLoader(dataset=dataset)
|
|
|
|
|
|
|
|
def predict_dataloader(self):
|
|
|
|
return DataLoader(dataset=dataset)
|
|
|
|
|
|
|
|
model = TestModel()
|
2021-08-24 02:40:36 +00:00
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
num_sanity_val_steps=0,
|
|
|
|
limit_train_batches=1,
|
|
|
|
limit_val_batches=1,
|
|
|
|
limit_test_batches=1,
|
|
|
|
limit_predict_batches=1,
|
|
|
|
max_steps=1,
|
|
|
|
callbacks=RichProgressBar(),
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
2021-09-29 09:54:30 +00:00
|
|
|
trainer.validate(model)
|
2021-08-24 02:40:36 +00:00
|
|
|
trainer.test(model)
|
|
|
|
trainer.predict(model)
|
|
|
|
|
2021-09-29 09:54:30 +00:00
|
|
|
assert progress_update.call_count == 8
|
2021-08-24 02:40:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_rich_progress_bar_import_error():
|
2021-09-09 20:53:47 +00:00
|
|
|
if not _RICH_AVAILABLE:
|
2021-12-01 06:14:19 +00:00
|
|
|
with pytest.raises(ImportError, match="`RichProgressBar` requires `rich` >= 10.2.2."):
|
2021-09-09 20:53:47 +00:00
|
|
|
Trainer(callbacks=RichProgressBar())
|
2021-09-16 21:11:59 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
|
|
|
def test_rich_progress_bar_custom_theme(tmpdir):
|
|
|
|
"""Test to ensure that custom theme styles are used."""
|
|
|
|
with mock.patch.multiple(
|
|
|
|
"pytorch_lightning.callbacks.progress.rich_progress",
|
2021-09-29 09:54:30 +00:00
|
|
|
CustomBarColumn=DEFAULT,
|
2021-09-16 21:11:59 +00:00
|
|
|
BatchesProcessedColumn=DEFAULT,
|
|
|
|
CustomTimeColumn=DEFAULT,
|
|
|
|
ProcessingSpeedColumn=DEFAULT,
|
|
|
|
) as mocks:
|
|
|
|
theme = RichProgressBarTheme()
|
|
|
|
|
|
|
|
progress_bar = RichProgressBar(theme=theme)
|
2021-09-29 09:54:30 +00:00
|
|
|
progress_bar.on_train_start(Trainer(tmpdir), BoringModel())
|
2021-09-16 21:11:59 +00:00
|
|
|
|
|
|
|
assert progress_bar.theme == theme
|
2021-09-29 09:54:30 +00:00
|
|
|
args, kwargs = mocks["CustomBarColumn"].call_args
|
2021-11-11 19:53:40 +00:00
|
|
|
assert kwargs["complete_style"] == theme.progress_bar
|
2021-09-16 21:11:59 +00:00
|
|
|
assert kwargs["finished_style"] == theme.progress_bar_finished
|
|
|
|
|
|
|
|
args, kwargs = mocks["BatchesProcessedColumn"].call_args
|
2021-11-11 19:53:40 +00:00
|
|
|
assert kwargs["style"] == theme.batch_progress
|
2021-09-16 21:11:59 +00:00
|
|
|
|
|
|
|
args, kwargs = mocks["CustomTimeColumn"].call_args
|
|
|
|
assert kwargs["style"] == theme.time
|
|
|
|
|
|
|
|
args, kwargs = mocks["ProcessingSpeedColumn"].call_args
|
|
|
|
assert kwargs["style"] == theme.processing_speed
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
|
|
|
def test_rich_progress_bar_keyboard_interrupt(tmpdir):
|
|
|
|
"""Test to ensure that when the user keyboard interrupts, we close the progress bar."""
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def on_train_start(self) -> None:
|
|
|
|
raise KeyboardInterrupt
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
|
|
|
|
with mock.patch(
|
|
|
|
"pytorch_lightning.callbacks.progress.rich_progress.Progress.stop", autospec=True
|
|
|
|
) as mock_progress_stop:
|
|
|
|
progress_bar = RichProgressBar()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
fast_dev_run=True,
|
|
|
|
callbacks=progress_bar,
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
mock_progress_stop.assert_called_once()
|
2021-11-01 17:22:53 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
2021-11-02 17:20:52 +00:00
|
|
|
def test_rich_progress_bar_configure_columns():
|
2021-11-01 17:22:53 +00:00
|
|
|
from rich.progress import TextColumn
|
|
|
|
|
|
|
|
custom_column = TextColumn("[progress.description]Testing Rich!")
|
|
|
|
|
|
|
|
class CustomRichProgressBar(RichProgressBar):
|
2021-11-09 13:00:37 +00:00
|
|
|
def configure_columns(self, trainer):
|
2021-11-01 17:22:53 +00:00
|
|
|
return [custom_column]
|
|
|
|
|
|
|
|
progress_bar = CustomRichProgressBar()
|
|
|
|
|
2021-11-09 13:00:37 +00:00
|
|
|
progress_bar._init_progress(Mock())
|
2021-11-01 17:22:53 +00:00
|
|
|
|
|
|
|
assert progress_bar.progress.columns[0] == custom_column
|
2021-11-09 13:00:37 +00:00
|
|
|
assert len(progress_bar.progress.columns) == 2
|
2021-11-02 17:20:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
|
|
|
@pytest.mark.parametrize(("leave", "reset_call_count"), ([(True, 0), (False, 5)]))
|
|
|
|
def test_rich_progress_bar_leave(tmpdir, leave, reset_call_count):
|
|
|
|
# Calling `reset` means continuing on the same progress bar.
|
|
|
|
model = BoringModel()
|
|
|
|
|
|
|
|
with mock.patch(
|
|
|
|
"pytorch_lightning.callbacks.progress.rich_progress.Progress.reset", autospec=True
|
|
|
|
) as mock_progress_reset:
|
|
|
|
progress_bar = RichProgressBar(leave=leave)
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
num_sanity_val_steps=0,
|
|
|
|
limit_train_batches=1,
|
|
|
|
max_epochs=6,
|
|
|
|
callbacks=progress_bar,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
assert mock_progress_reset.call_count == reset_call_count
|
2021-11-19 05:59:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
|
|
|
@mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update")
|
|
|
|
@pytest.mark.parametrize(("refresh_rate", "expected_call_count"), ([(0, 0), (3, 7)]))
|
|
|
|
def test_rich_progress_bar_refresh_rate(progress_update, tmpdir, refresh_rate, expected_call_count):
|
|
|
|
|
|
|
|
model = BoringModel()
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
num_sanity_val_steps=0,
|
|
|
|
limit_train_batches=6,
|
|
|
|
limit_val_batches=6,
|
|
|
|
max_epochs=1,
|
|
|
|
callbacks=RichProgressBar(refresh_rate=refresh_rate),
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert progress_update.call_count == expected_call_count
|
2021-12-15 09:23:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(rich=True)
|
|
|
|
@pytest.mark.parametrize("limit_val_batches", (1, 5))
|
|
|
|
def test_rich_progress_bar_num_sanity_val_steps(tmpdir, limit_val_batches: int):
|
|
|
|
model = BoringModel()
|
|
|
|
|
|
|
|
progress_bar = RichProgressBar()
|
|
|
|
num_sanity_val_steps = 3
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
num_sanity_val_steps=num_sanity_val_steps,
|
|
|
|
limit_train_batches=1,
|
|
|
|
limit_val_batches=limit_val_batches,
|
|
|
|
max_epochs=1,
|
|
|
|
callbacks=progress_bar,
|
|
|
|
)
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
assert progress_bar.progress.tasks[0].completed == min(num_sanity_val_steps, limit_val_batches)
|