382 lines
12 KiB
Python
382 lines
12 KiB
Python
|
import os
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from torch import optim
|
||
|
from torch.utils.data import DataLoader
|
||
|
from torch.utils.data.distributed import DistributedSampler
|
||
|
from torchvision.datasets import MNIST
|
||
|
from torchvision import transforms
|
||
|
from test_tube import HyperOptArgumentParser
|
||
|
|
||
|
from pytorch_lightning.root_module.root_module import LightningModule
|
||
|
from pytorch_lightning import data_loader
|
||
|
|
||
|
|
||
|
class LightningValidationStepMixin:
|
||
|
"""
|
||
|
Add val_dataloader and validation_step methods for the case
|
||
|
when val_dataloader returns a single dataloader
|
||
|
"""
|
||
|
|
||
|
@data_loader
|
||
|
def val_dataloader(self):
|
||
|
return self._dataloader(train=False)
|
||
|
|
||
|
def validation_step(self, data_batch, batch_i):
|
||
|
"""
|
||
|
Lightning calls this inside the validation loop
|
||
|
:param data_batch:
|
||
|
:return:
|
||
|
"""
|
||
|
x, y = data_batch
|
||
|
x = x.view(x.size(0), -1)
|
||
|
y_hat = self.forward(x)
|
||
|
|
||
|
loss_val = self.loss(y, y_hat)
|
||
|
|
||
|
# acc
|
||
|
labels_hat = torch.argmax(y_hat, dim=1)
|
||
|
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
||
|
val_acc = torch.tensor(val_acc)
|
||
|
|
||
|
if self.on_gpu:
|
||
|
val_acc = val_acc.cuda(loss_val.device.index)
|
||
|
|
||
|
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
|
||
|
if self.trainer.use_dp:
|
||
|
loss_val = loss_val.unsqueeze(0)
|
||
|
val_acc = val_acc.unsqueeze(0)
|
||
|
|
||
|
# alternate possible outputs to test
|
||
|
if batch_i % 1 == 0:
|
||
|
output = OrderedDict({
|
||
|
'val_loss': loss_val,
|
||
|
'val_acc': val_acc,
|
||
|
})
|
||
|
return output
|
||
|
if batch_i % 2 == 0:
|
||
|
return val_acc
|
||
|
|
||
|
if batch_i % 3 == 0:
|
||
|
output = OrderedDict({
|
||
|
'val_loss': loss_val,
|
||
|
'val_acc': val_acc,
|
||
|
'test_dic': {'val_loss_a': loss_val}
|
||
|
})
|
||
|
return output
|
||
|
|
||
|
|
||
|
class LightningValidationMixin(LightningValidationStepMixin):
|
||
|
"""
|
||
|
Add val_dataloader, validation_step, and validation_end methods for the case
|
||
|
when val_dataloader returns a single dataloader
|
||
|
"""
|
||
|
|
||
|
def validation_end(self, outputs):
|
||
|
"""
|
||
|
Called at the end of validation to aggregate outputs
|
||
|
:param outputs: list of individual outputs of each validation step
|
||
|
:return:
|
||
|
"""
|
||
|
# if returned a scalar from validation_step, outputs is a list of tensor scalars
|
||
|
# we return just the average in this case (if we want)
|
||
|
# return torch.stack(outputs).mean()
|
||
|
val_loss_mean = 0
|
||
|
val_acc_mean = 0
|
||
|
for output in outputs:
|
||
|
val_loss = output['val_loss']
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
if self.trainer.use_dp:
|
||
|
val_loss = torch.mean(val_loss)
|
||
|
val_loss_mean += val_loss
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
val_acc = output['val_acc']
|
||
|
if self.trainer.use_dp:
|
||
|
val_acc = torch.mean(val_acc)
|
||
|
|
||
|
val_acc_mean += val_acc
|
||
|
|
||
|
val_loss_mean /= len(outputs)
|
||
|
val_acc_mean /= len(outputs)
|
||
|
|
||
|
tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()}
|
||
|
return tqdm_dic
|
||
|
|
||
|
|
||
|
class LightningValidationStepMultipleDataloadersMixin:
|
||
|
"""
|
||
|
Add val_dataloader and validation_step methods for the case
|
||
|
when val_dataloader returns multiple dataloaders
|
||
|
"""
|
||
|
|
||
|
@data_loader
|
||
|
def val_dataloader(self):
|
||
|
return [self._dataloader(train=False), self._dataloader(train=False)]
|
||
|
|
||
|
def validation_step(self, data_batch, batch_i, dataloader_i):
|
||
|
"""
|
||
|
Lightning calls this inside the validation loop
|
||
|
:param data_batch:
|
||
|
:return:
|
||
|
"""
|
||
|
x, y = data_batch
|
||
|
x = x.view(x.size(0), -1)
|
||
|
y_hat = self.forward(x)
|
||
|
|
||
|
loss_val = self.loss(y, y_hat)
|
||
|
|
||
|
# acc
|
||
|
labels_hat = torch.argmax(y_hat, dim=1)
|
||
|
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
||
|
val_acc = torch.tensor(val_acc)
|
||
|
|
||
|
if self.on_gpu:
|
||
|
val_acc = val_acc.cuda(loss_val.device.index)
|
||
|
|
||
|
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
|
||
|
if self.trainer.use_dp:
|
||
|
loss_val = loss_val.unsqueeze(0)
|
||
|
val_acc = val_acc.unsqueeze(0)
|
||
|
|
||
|
# alternate possible outputs to test
|
||
|
if batch_i % 1 == 0:
|
||
|
output = OrderedDict({
|
||
|
'val_loss': loss_val,
|
||
|
'val_acc': val_acc,
|
||
|
})
|
||
|
return output
|
||
|
if batch_i % 2 == 0:
|
||
|
return val_acc
|
||
|
|
||
|
if batch_i % 3 == 0:
|
||
|
output = OrderedDict({
|
||
|
'val_loss': loss_val,
|
||
|
'val_acc': val_acc,
|
||
|
'test_dic': {'val_loss_a': loss_val}
|
||
|
})
|
||
|
return output
|
||
|
if batch_i % 5 == 0:
|
||
|
output = OrderedDict({
|
||
|
f'val_loss_{dataloader_i}': loss_val,
|
||
|
f'val_acc_{dataloader_i}': val_acc,
|
||
|
})
|
||
|
return output
|
||
|
|
||
|
|
||
|
class LightningValidationMultipleDataloadersMixin(LightningValidationStepMultipleDataloadersMixin):
|
||
|
"""
|
||
|
Add val_dataloader, validation_step, and validation_end methods for the case
|
||
|
when val_dataloader returns multiple dataloaders
|
||
|
"""
|
||
|
|
||
|
def validation_end(self, outputs):
|
||
|
"""
|
||
|
Called at the end of validation to aggregate outputs
|
||
|
:param outputs: list of individual outputs of each validation step
|
||
|
:return:
|
||
|
"""
|
||
|
# if returned a scalar from validation_step, outputs is a list of tensor scalars
|
||
|
# we return just the average in this case (if we want)
|
||
|
# return torch.stack(outputs).mean()
|
||
|
val_loss_mean = 0
|
||
|
val_acc_mean = 0
|
||
|
for output in outputs:
|
||
|
val_loss = output['val_loss']
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
if self.trainer.use_dp:
|
||
|
val_loss = torch.mean(val_loss)
|
||
|
val_loss_mean += val_loss
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
val_acc = output['val_acc']
|
||
|
if self.trainer.use_dp:
|
||
|
val_acc = torch.mean(val_acc)
|
||
|
|
||
|
val_acc_mean += val_acc
|
||
|
|
||
|
val_loss_mean /= len(outputs)
|
||
|
val_acc_mean /= len(outputs)
|
||
|
|
||
|
tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()}
|
||
|
return tqdm_dic
|
||
|
|
||
|
|
||
|
class LightningTestStepMixin:
|
||
|
|
||
|
@data_loader
|
||
|
def test_dataloader(self):
|
||
|
return self._dataloader(train=False)
|
||
|
|
||
|
def test_step(self, data_batch, batch_i):
|
||
|
"""
|
||
|
Lightning calls this inside the validation loop
|
||
|
:param data_batch:
|
||
|
:return:
|
||
|
"""
|
||
|
x, y = data_batch
|
||
|
x = x.view(x.size(0), -1)
|
||
|
y_hat = self.forward(x)
|
||
|
|
||
|
loss_test = self.loss(y, y_hat)
|
||
|
|
||
|
# acc
|
||
|
labels_hat = torch.argmax(y_hat, dim=1)
|
||
|
test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
||
|
test_acc = torch.tensor(test_acc)
|
||
|
|
||
|
if self.on_gpu:
|
||
|
test_acc = test_acc.cuda(loss_test.device.index)
|
||
|
|
||
|
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
|
||
|
if self.trainer.use_dp:
|
||
|
loss_test = loss_test.unsqueeze(0)
|
||
|
test_acc = test_acc.unsqueeze(0)
|
||
|
|
||
|
# alternate possible outputs to test
|
||
|
if batch_i % 1 == 0:
|
||
|
output = OrderedDict({
|
||
|
'test_loss': loss_test,
|
||
|
'test_acc': test_acc,
|
||
|
})
|
||
|
return output
|
||
|
if batch_i % 2 == 0:
|
||
|
return test_acc
|
||
|
|
||
|
if batch_i % 3 == 0:
|
||
|
output = OrderedDict({
|
||
|
'test_loss': loss_test,
|
||
|
'test_acc': test_acc,
|
||
|
'test_dic': {'test_loss_a': loss_test}
|
||
|
})
|
||
|
return output
|
||
|
|
||
|
|
||
|
class LightningTestMixin(LightningTestStepMixin):
|
||
|
def test_end(self, outputs):
|
||
|
"""
|
||
|
Called at the end of validation to aggregate outputs
|
||
|
:param outputs: list of individual outputs of each validation step
|
||
|
:return:
|
||
|
"""
|
||
|
# if returned a scalar from test_step, outputs is a list of tensor scalars
|
||
|
# we return just the average in this case (if we want)
|
||
|
# return torch.stack(outputs).mean()
|
||
|
test_loss_mean = 0
|
||
|
test_acc_mean = 0
|
||
|
for output in outputs:
|
||
|
test_loss = output['test_loss']
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
if self.trainer.use_dp:
|
||
|
test_loss = torch.mean(test_loss)
|
||
|
test_loss_mean += test_loss
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
test_acc = output['test_acc']
|
||
|
if self.trainer.use_dp:
|
||
|
test_acc = torch.mean(test_acc)
|
||
|
|
||
|
test_acc_mean += test_acc
|
||
|
|
||
|
test_loss_mean /= len(outputs)
|
||
|
test_acc_mean /= len(outputs)
|
||
|
|
||
|
tqdm_dic = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()}
|
||
|
return tqdm_dic
|
||
|
|
||
|
|
||
|
class LightningTestStepMultipleDataloadersMixin:
|
||
|
|
||
|
@data_loader
|
||
|
def test_dataloader(self):
|
||
|
return [self._dataloader(train=False), self._dataloader(train=False)]
|
||
|
|
||
|
def test_step(self, data_batch, batch_i, dataloader_i):
|
||
|
"""
|
||
|
Lightning calls this inside the validation loop
|
||
|
:param data_batch:
|
||
|
:return:
|
||
|
"""
|
||
|
x, y = data_batch
|
||
|
x = x.view(x.size(0), -1)
|
||
|
y_hat = self.forward(x)
|
||
|
|
||
|
loss_test = self.loss(y, y_hat)
|
||
|
|
||
|
# acc
|
||
|
labels_hat = torch.argmax(y_hat, dim=1)
|
||
|
test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
||
|
test_acc = torch.tensor(test_acc)
|
||
|
|
||
|
if self.on_gpu:
|
||
|
test_acc = test_acc.cuda(loss_test.device.index)
|
||
|
|
||
|
# in DP mode (default) make sure if result is scalar, there's another dim in the beginning
|
||
|
if self.trainer.use_dp:
|
||
|
loss_test = loss_test.unsqueeze(0)
|
||
|
test_acc = test_acc.unsqueeze(0)
|
||
|
|
||
|
# alternate possible outputs to test
|
||
|
if batch_i % 1 == 0:
|
||
|
output = OrderedDict({
|
||
|
'test_loss': loss_test,
|
||
|
'test_acc': test_acc,
|
||
|
})
|
||
|
return output
|
||
|
if batch_i % 2 == 0:
|
||
|
return test_acc
|
||
|
|
||
|
if batch_i % 3 == 0:
|
||
|
output = OrderedDict({
|
||
|
'test_loss': loss_test,
|
||
|
'test_acc': test_acc,
|
||
|
'test_dic': {'test_loss_a': loss_test}
|
||
|
})
|
||
|
return output
|
||
|
if batch_i % 5 == 0:
|
||
|
output = OrderedDict({
|
||
|
f'test_loss_{dataloader_i}': loss_test,
|
||
|
f'test_acc_{dataloader_i}': test_acc,
|
||
|
})
|
||
|
return output
|
||
|
|
||
|
|
||
|
class LightningTestMultipleDataloadersMixin(LightningTestStepMultipleDataloadersMixin):
|
||
|
def test_end(self, outputs):
|
||
|
"""
|
||
|
Called at the end of validation to aggregate outputs
|
||
|
:param outputs: list of individual outputs of each validation step
|
||
|
:return:
|
||
|
"""
|
||
|
# if returned a scalar from test_step, outputs is a list of tensor scalars
|
||
|
# we return just the average in this case (if we want)
|
||
|
# return torch.stack(outputs).mean()
|
||
|
test_loss_mean = 0
|
||
|
test_acc_mean = 0
|
||
|
for output in outputs:
|
||
|
test_loss = output['test_loss']
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
if self.trainer.use_dp:
|
||
|
test_loss = torch.mean(test_loss)
|
||
|
test_loss_mean += test_loss
|
||
|
|
||
|
# reduce manually when using dp
|
||
|
test_acc = output['test_acc']
|
||
|
if self.trainer.use_dp:
|
||
|
test_acc = torch.mean(test_acc)
|
||
|
|
||
|
test_acc_mean += test_acc
|
||
|
|
||
|
test_loss_mean /= len(outputs)
|
||
|
test_acc_mean /= len(outputs)
|
||
|
|
||
|
tqdm_dic = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()}
|
||
|
return tqdm_dic
|