import os from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from torchvision.datasets import MNIST from torchvision import transforms from test_tube import HyperOptArgumentParser from pytorch_lightning.root_module.root_module import LightningModule from pytorch_lightning import data_loader class LightningValidationStepMixin: """ Add val_dataloader and validation_step methods for the case when val_dataloader returns a single dataloader """ @data_loader def val_dataloader(self): return self._dataloader(train=False) def validation_step(self, data_batch, batch_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) if self.on_gpu: val_acc = val_acc.cuda(loss_val.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_val = loss_val.unsqueeze(0) val_acc = val_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, }) return output if batch_i % 2 == 0: return val_acc if batch_i % 3 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, 'test_dic': {'val_loss_a': loss_val} }) return output class LightningValidationMixin(LightningValidationStepMixin): """ Add val_dataloader, validation_step, and validation_end methods for the case when val_dataloader returns a single dataloader """ def validation_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from validation_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() val_loss_mean = 0 val_acc_mean = 0 for output in outputs: val_loss = output['val_loss'] # reduce manually when using dp if self.trainer.use_dp: val_loss = torch.mean(val_loss) val_loss_mean += val_loss # reduce manually when using dp val_acc = output['val_acc'] if self.trainer.use_dp: val_acc = torch.mean(val_acc) val_acc_mean += val_acc val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} return tqdm_dic class LightningValidationStepMultipleDataloadersMixin: """ Add val_dataloader and validation_step methods for the case when val_dataloader returns multiple dataloaders """ @data_loader def val_dataloader(self): return [self._dataloader(train=False), self._dataloader(train=False)] def validation_step(self, data_batch, batch_i, dataloader_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) if self.on_gpu: val_acc = val_acc.cuda(loss_val.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_val = loss_val.unsqueeze(0) val_acc = val_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, }) return output if batch_i % 2 == 0: return val_acc if batch_i % 3 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, 'test_dic': {'val_loss_a': loss_val} }) return output if batch_i % 5 == 0: output = OrderedDict({ f'val_loss_{dataloader_i}': loss_val, f'val_acc_{dataloader_i}': val_acc, }) return output class LightningValidationMultipleDataloadersMixin(LightningValidationStepMultipleDataloadersMixin): """ Add val_dataloader, validation_step, and validation_end methods for the case when val_dataloader returns multiple dataloaders """ def validation_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from validation_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() val_loss_mean = 0 val_acc_mean = 0 for output in outputs: val_loss = output['val_loss'] # reduce manually when using dp if self.trainer.use_dp: val_loss = torch.mean(val_loss) val_loss_mean += val_loss # reduce manually when using dp val_acc = output['val_acc'] if self.trainer.use_dp: val_acc = torch.mean(val_acc) val_acc_mean += val_acc val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} return tqdm_dic class LightningTestStepMixin: @data_loader def test_dataloader(self): return self._dataloader(train=False) def test_step(self, data_batch, batch_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_test = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) test_acc = torch.tensor(test_acc) if self.on_gpu: test_acc = test_acc.cuda(loss_test.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_test = loss_test.unsqueeze(0) test_acc = test_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, }) return output if batch_i % 2 == 0: return test_acc if batch_i % 3 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, 'test_dic': {'test_loss_a': loss_test} }) return output class LightningTestMixin(LightningTestStepMixin): def test_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from test_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() test_loss_mean = 0 test_acc_mean = 0 for output in outputs: test_loss = output['test_loss'] # reduce manually when using dp if self.trainer.use_dp: test_loss = torch.mean(test_loss) test_loss_mean += test_loss # reduce manually when using dp test_acc = output['test_acc'] if self.trainer.use_dp: test_acc = torch.mean(test_acc) test_acc_mean += test_acc test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) tqdm_dic = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} return tqdm_dic class LightningTestStepMultipleDataloadersMixin: @data_loader def test_dataloader(self): return [self._dataloader(train=False), self._dataloader(train=False)] def test_step(self, data_batch, batch_i, dataloader_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_test = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) test_acc = torch.tensor(test_acc) if self.on_gpu: test_acc = test_acc.cuda(loss_test.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_test = loss_test.unsqueeze(0) test_acc = test_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, }) return output if batch_i % 2 == 0: return test_acc if batch_i % 3 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, 'test_dic': {'test_loss_a': loss_test} }) return output if batch_i % 5 == 0: output = OrderedDict({ f'test_loss_{dataloader_i}': loss_test, f'test_acc_{dataloader_i}': test_acc, }) return output class LightningTestMultipleDataloadersMixin(LightningTestStepMultipleDataloadersMixin): def test_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from test_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() test_loss_mean = 0 test_acc_mean = 0 for output in outputs: test_loss = output['test_loss'] # reduce manually when using dp if self.trainer.use_dp: test_loss = torch.mean(test_loss) test_loss_mean += test_loss # reduce manually when using dp test_acc = output['test_acc'] if self.trainer.use_dp: test_acc = torch.mean(test_acc) test_acc_mean += test_acc test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) tqdm_dic = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} return tqdm_dic