2023-03-06 20:19:25 +00:00
|
|
|
# Copyright The Lightning AI team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from typing import Callable
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.utils.data import DataLoader, TensorDataset
|
|
|
|
|
|
|
|
|
|
|
|
class ParityModel(ABC, nn.Module):
|
|
|
|
"""Defines the interface for a model in a Fabric-PyTorch parity test."""
|
|
|
|
|
|
|
|
# Benchmarking parameters that should be model-specific
|
|
|
|
batch_size = 1
|
|
|
|
num_steps = 1
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def get_optimizer(self, *args, **kwargs) -> Optimizer:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def get_dataloader(self, *args, **kwargs) -> DataLoader:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def get_loss_function(self) -> Callable:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNet(ParityModel):
|
|
|
|
batch_size = 4
|
|
|
|
num_steps = 1000
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.conv1 = nn.Conv2d(3, 6, 5)
|
|
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
|
|
self.conv2 = nn.Conv2d(6, 16, 5)
|
|
|
|
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
|
|
|
self.fc2 = nn.Linear(120, 84)
|
|
|
|
self.fc3 = nn.Linear(84, 10)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.pool(F.relu(self.conv1(x)))
|
|
|
|
x = self.pool(F.relu(self.conv2(x)))
|
|
|
|
x = torch.flatten(x, 1) # flatten all dimensions except batch
|
|
|
|
x = F.relu(self.fc1(x))
|
|
|
|
x = F.relu(self.fc2(x))
|
|
|
|
x = self.fc3(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def get_optimizer(self):
|
|
|
|
return torch.optim.SGD(self.parameters(), lr=0.0001)
|
|
|
|
|
|
|
|
def get_dataloader(self):
|
|
|
|
# multiply * 8 just in case world size is larger than 1
|
|
|
|
dataset_size = self.num_steps * self.batch_size * 8
|
|
|
|
inputs = torch.rand(dataset_size, 3, 32, 32)
|
|
|
|
labels = torch.randint(0, 10, (dataset_size,))
|
|
|
|
dataset = TensorDataset(inputs, labels)
|
2023-05-05 09:34:40 +00:00
|
|
|
return DataLoader(
|
2023-03-06 20:19:25 +00:00
|
|
|
dataset,
|
|
|
|
batch_size=self.batch_size,
|
|
|
|
num_workers=2,
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_loss_function(self):
|
|
|
|
return F.cross_entropy
|