lightning/tests/tests_fabric/parity/models.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

84 lines
2.5 KiB
Python
Raw Normal View History

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from typing import Callable
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Optimizer
from torch.utils.data import DataLoader, TensorDataset
class ParityModel(ABC, nn.Module):
"""Defines the interface for a model in a Fabric-PyTorch parity test."""
# Benchmarking parameters that should be model-specific
batch_size = 1
num_steps = 1
@abstractmethod
def get_optimizer(self, *args, **kwargs) -> Optimizer:
pass
@abstractmethod
def get_dataloader(self, *args, **kwargs) -> DataLoader:
pass
@abstractmethod
def get_loss_function(self) -> Callable:
pass
class ConvNet(ParityModel):
batch_size = 4
num_steps = 1000
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def get_optimizer(self):
return torch.optim.SGD(self.parameters(), lr=0.0001)
def get_dataloader(self):
# multiply * 8 just in case world size is larger than 1
dataset_size = self.num_steps * self.batch_size * 8
inputs = torch.rand(dataset_size, 3, 32, 32)
labels = torch.randint(0, 10, (dataset_size,))
dataset = TensorDataset(inputs, labels)
dataloader = DataLoader(
dataset,
batch_size=self.batch_size,
num_workers=2,
)
return dataloader
def get_loss_function(self):
return F.cross_entropy