lightning/tests/models/test_cpu.py

522 lines
16 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
import os
import platform
2020-08-24 09:28:56 +00:00
from distutils.version import LooseVersion
import pytest
import torch
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.core.step_result import TrainResult
2020-06-16 02:03:40 +00:00
from tests.base import EvalModelTemplate
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
def test_cpu_slurm_save_load(tmpdir):
"""Verify model save/load/checkpoint on CPU."""
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
version = logger.version
# fit model
trainer = Trainer(
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
default_root_dir=tmpdir,
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
max_epochs=1,
logger=logger,
limit_train_batches=0.2,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
)
result = trainer.fit(model)
real_global_step = trainer.global_step
# traning complete
assert result == 1, 'cpu model failed to complete'
# predict with trained model before saving
# make a prediction
dataloaders = model.test_dataloader()
if not isinstance(dataloaders, list):
dataloaders = [dataloaders]
for dataloader in dataloaders:
for batch in dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
model.eval()
pred_before_saving = model(x)
# test HPC saving
# simulate snapshot on slurm
saved_filepath = trainer.checkpoint_connector.hpc_save(trainer.weights_save_path, logger)
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
assert os.path.exists(saved_filepath)
# new logger file to get meta
logger = tutils.get_default_logger(tmpdir, version=version)
trainer = Trainer(
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
default_root_dir=tmpdir,
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(dirpath=tmpdir),
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
)
model = EvalModelTemplate(**hparams)
# set the epoch start hook so we can predict before the model does the full training
def assert_pred_same():
assert trainer.global_step == real_global_step and trainer.global_step > 0
# predict with loaded model to make sure answers are the same
trainer.model.eval()
new_pred = trainer.model(x)
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
model.on_epoch_start = assert_pred_same
# by calling fit again, we trigger training, loading weights from the cluster
# and our hook to predict using current model before any more weight updates
trainer.fit(model)
def test_early_stopping_cpu_model(tmpdir):
"""Test each of the trainer options."""
ref: result 1/n (make monitor default to checkpoint_on to simplify re… (#3571) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * force crash when max_epochs < epochs in a checkpoint Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
2020-09-21 02:58:43 +00:00
stopping = EarlyStopping(monitor='early_stop_on', min_delta=0.1)
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[stopping],
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
max_epochs=2,
gradient_clip_val=1.0,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
overfit_batches=0.20,
track_grad_norm=2,
limit_train_batches=0.1,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.1,
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False)
# test freeze on cpu
model.freeze()
model.unfreeze()
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif((platform.system() == "Darwin" and
2020-08-24 09:28:56 +00:00
LooseVersion(torch.__version__) < LooseVersion("1.3.0")),
reason="Distributed training is not supported on MacOS before Torch 1.3.0")
def test_multi_cpu_model_ddp(tmpdir):
"""Make sure DDP works."""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
gpus=None,
num_processes=2,
distributed_backend='ddp_cpu',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False)
def test_lbfgs_cpu_model(tmpdir):
"""Test each of the trainer options."""
trainer_options = dict(
default_root_dir=tmpdir,
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
max_epochs=1,
progress_bar_refresh_rate=0,
weights_summary='top',
limit_train_batches=0.2,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
)
hparams = EvalModelTemplate.get_default_hparams()
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
hparams.update(optimizer_name='lbfgs',
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
learning_rate=0.004)
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
model = EvalModelTemplate(**hparams)
model.configure_optimizers = model.configure_optimizers__lbfgs
tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.25)
def test_default_logger_callbacks_cpu_model(tmpdir):
"""Test each of the trainer options."""
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
gradient_clip_val=1.0,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
overfit_batches=0.20,
progress_bar_refresh_rate=0,
limit_train_batches=0.01,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.01,
)
model = EvalModelTemplate()
tpipes.run_model_test_without_loggers(trainer_options, model)
# test freeze on cpu
model.freeze()
model.unfreeze()
def test_running_test_after_fitting(tmpdir):
"""Verify test() on fitted model."""
model = EvalModelTemplate()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
# logger file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
Replaces ddp .spawn with subprocess (#2029) * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * replace ddp spawn with subprocess * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix * hot fix
2020-06-01 15:00:32 +00:00
max_epochs=2,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
limit_test_batches=0.2,
checkpoint_callback=checkpoint,
logger=logger,
)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
trainer.test()
# test we have good test accuracy
tutils.assert_ok_model_acc(trainer, thr=0.5)
def test_running_test_no_val(tmpdir):
"""Verify `test()` works on a model with no `val_loader`."""
model = EvalModelTemplate()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
# logger file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# fit model
trainer = Trainer(
Continue Jeremy's early stopping PR #1504 (#2391) * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * cannot pass an int as default_save_path * refactor log message * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * add state_dict for early stopping * move best attr after monitor_op defined * improve early stopping and model checkpoint callbacks * fix formatting * fix attr init order * clean up setting of default_root_dir attr * logger needs default root dir set first * reorg trainer init * remove direct references to checkpoint callback * more fixes * more bugfixes * run callbacks at epoch end * update tests to use on epoch end * PR cleanup * address failing tests * refactor for homogeneity * fix merge conflict * separate tests * tests for early stopping bug regressions * small fixes * revert model checkpoint change * typo fix * fix tests * update train loop * fix test case * appease the linter * fix some doctests * move config to callback * fixes from rebase * fixes from rebase * chlog * docs * reformat * formatting * fix * fix * fixes from rebase * add new test for patience * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update tests/callbacks/test_early_stopping.py Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * fix formatting * remove enable_early_stop attribute * fix test with new epoch indexing * fix progress bar totals * fix off by one error (see #2289) epoch starts at 0 now * added missing imports * fix hpc_save folderpath * fix formatting * fix tests * small fixes from a rebase * fix * tmpdir * tmpdir * tmpdir * wandb * fix merge conflict * add back evaluation after training * test_resume_early_stopping_from_checkpoint TODO * undo the horovod check * update changelog * remove a duplicate test from merge error * try fix dp_resume test * add the logger fix from master * try remove default_root_dir * try mocking numpy * try import numpy in docs test * fix wandb test * pep 8 fix * skip if no amp * dont mock when doctesting * install extra * fix the resume ES test * undo conf.py changes * revert remove comet pickle from test * Update CHANGELOG.md Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> * Update weights_loading.rst * Update weights_loading.rst * Update weights_loading.rst * renamed flag * renamed flag * revert the None check in logger experiment name/version * add the old comments * _experiment * test chckpointing on DDP * skip the ddp test on windows * cloudpickle * renamed flag * renamed flag * parentheses for clarity * apply suggestion max epochs Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Jeremy Jordan <jtjordan@ncsu.edu> Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu>
2020-06-29 01:36:46 +00:00
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.2,
limit_test_batches=0.2,
checkpoint_callback=checkpoint,
logger=logger,
)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
trainer.test()
# test we have good test accuracy
2020-01-17 10:50:26 +00:00
tutils.assert_ok_model_acc(trainer)
def test_simple_cpu(tmpdir):
"""Verify continue training session on CPU."""
model = EvalModelTemplate()
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.1,
limit_train_batches=20,
)
result = trainer.fit(model)
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
def test_cpu_model(tmpdir):
"""Make sure model trains on CPU."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.4
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False)
def test_all_features_cpu_model(tmpdir):
"""Test each of the trainer options."""
trainer_options = dict(
default_root_dir=tmpdir,
gradient_clip_val=1.0,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
overfit_batches=0.20,
track_grad_norm=2,
progress_bar_refresh_rate=0,
accumulate_grad_batches=2,
max_epochs=1,
limit_train_batches=0.4,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0.4
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model, on_gpu=False)
def test_tbptt_cpu_model(tmpdir):
"""Test truncated back propagation through time works."""
truncated_bptt_steps = 2
sequence_size = 30
batch_size = 30
x_seq = torch.rand(batch_size, sequence_size, 1)
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
class MockSeq2SeqDataset(torch.utils.data.Dataset):
def __getitem__(self, i):
return x_seq, y_seq_list
def __len__(self):
return 1
class BpttTestModel(EvalModelTemplate):
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.test_hidden = None
def training_step(self, batch, batch_idx, hiddens):
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
self.test_hidden = torch.rand(1)
x_tensor, y_list = batch
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
loss_val = torch.nn.functional.mse_loss(
pred, y_tensor.view(batch_size, truncated_bptt_steps))
return {
'loss': loss_val,
'hiddens': self.test_hidden,
}
def training_epoch_end(self, training_step_outputs):
training_step_outputs = training_step_outputs[0]
assert len(training_step_outputs) == (sequence_size / truncated_bptt_steps)
loss = torch.stack([x['loss'] for x in training_step_outputs]).mean()
self.log('train_loss', loss)
def train_dataloader(self):
return torch.utils.data.DataLoader(
dataset=MockSeq2SeqDataset(),
batch_size=batch_size,
shuffle=False,
sampler=None,
)
hparams = EvalModelTemplate.get_default_hparams()
hparams.update(
batch_size=batch_size,
in_features=truncated_bptt_steps,
hidden_dim=truncated_bptt_steps,
out_features=truncated_bptt_steps
)
model = BpttTestModel(**hparams)
model.example_input_array = torch.randn(5, truncated_bptt_steps)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
truncated_bptt_steps=truncated_bptt_steps,
limit_val_batches=0,
weights_summary=None,
)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
def test_tbptt_cpu_model_result(tmpdir):
"""Test truncated back propagation through time works."""
truncated_bptt_steps = 2
sequence_size = 30
batch_size = 30
x_seq = torch.rand(batch_size, sequence_size, 1)
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
class MockSeq2SeqDataset(torch.utils.data.Dataset):
def __getitem__(self, i):
return x_seq, y_seq_list
def __len__(self):
return 1
class BpttTestModel(EvalModelTemplate):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.test_hidden = None
def training_step(self, batch, batch_idx, hiddens):
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
self.test_hidden = torch.rand(1)
x_tensor, y_list = batch
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
loss_val = torch.nn.functional.mse_loss(
pred, y_tensor.view(batch_size, truncated_bptt_steps))
result = TrainResult(loss_val, hiddens=self.test_hidden)
return result
def training_epoch_end(self, training_step_outputs):
result = training_step_outputs
assert isinstance(result, TrainResult)
assert result.minimize.size(1) == (sequence_size / truncated_bptt_steps)
result.minimize = result.minimize.mean()
return result
def train_dataloader(self):
return torch.utils.data.DataLoader(
dataset=MockSeq2SeqDataset(),
batch_size=batch_size,
shuffle=False,
sampler=None,
)
hparams = EvalModelTemplate.get_default_hparams()
hparams.update(
batch_size=batch_size,
in_features=truncated_bptt_steps,
hidden_dim=truncated_bptt_steps,
out_features=truncated_bptt_steps
)
model = BpttTestModel(**hparams)
model.example_input_array = torch.randn(5, truncated_bptt_steps)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
truncated_bptt_steps=truncated_bptt_steps,
limit_val_batches=0,
weights_summary=None,
)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
def test_tbptt_cpu_model_result_auto_reduce(tmpdir):
"""Test truncated back propagation through time works."""
truncated_bptt_steps = 2
sequence_size = 30
batch_size = 30
x_seq = torch.rand(batch_size, sequence_size, 1)
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
class MockSeq2SeqDataset(torch.utils.data.Dataset):
def __getitem__(self, i):
return x_seq, y_seq_list
def __len__(self):
return 1
class BpttTestModel(EvalModelTemplate):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.test_hidden = None
def training_step(self, batch, batch_idx, hiddens):
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
self.test_hidden = torch.rand(1)
x_tensor, y_list = batch
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
loss_val = torch.nn.functional.mse_loss(
pred, y_tensor.view(batch_size, truncated_bptt_steps))
result = TrainResult(loss_val, hiddens=self.test_hidden)
return result
def train_dataloader(self):
return torch.utils.data.DataLoader(
dataset=MockSeq2SeqDataset(),
batch_size=batch_size,
shuffle=False,
sampler=None,
)
hparams = EvalModelTemplate.get_default_hparams()
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
hparams.update(
batch_size=batch_size,
in_features=truncated_bptt_steps,
hidden_dim=truncated_bptt_steps,
out_features=truncated_bptt_steps
)
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
model = BpttTestModel(**hparams)
model.example_input_array = torch.randn(5, truncated_bptt_steps)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
truncated_bptt_steps=truncated_bptt_steps,
[WIP] Rename overfit_pct to overfit_batches (and fix) and val_percent_check and test_percent_check (and fix) (#2213) * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * fixed percent check for val/test * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * overfit_pct now uses train loaders for val and test and does not shuffle * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks * add on fit_start on fit_end hooks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-06-17 12:03:28 +00:00
limit_val_batches=0,
weights_summary=None,
)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'