2020-01-21 20:18:32 +00:00
|
|
|
.. role:: hidden
|
|
|
|
:class: hidden-section
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
.. testsetup:: *
|
|
|
|
|
|
|
|
import os
|
|
|
|
from pytorch_lightning.trainer.trainer import Trainer
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
|
|
from pytorch_lightning.utilities.seed import seed_everything
|
|
|
|
|
2020-08-13 22:56:51 +00:00
|
|
|
.. _trainer:
|
|
|
|
|
2020-01-21 20:18:32 +00:00
|
|
|
Trainer
|
2020-02-11 12:41:15 +00:00
|
|
|
=======
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
Once you've organized your PyTorch code into a LightningModule,
|
|
|
|
the Trainer automates everything else.
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="100%" max-width="800px" controls autoplay
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pt_trainer_mov.m4v"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This abstraction achieves the following:
|
|
|
|
|
|
|
|
1. You maintain control over all aspects via PyTorch code without an added abstraction.
|
|
|
|
|
|
|
|
2. The trainer uses best practices embedded by contributors and users
|
|
|
|
from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc...
|
|
|
|
|
|
|
|
3. The trainer allows overriding any key part that you don't want automated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-----------
|
|
|
|
|
|
|
|
Basic use
|
|
|
|
---------
|
|
|
|
|
|
|
|
This is the basic use of the trainer:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
model = MyLightningModule()
|
|
|
|
|
|
|
|
trainer = Trainer()
|
|
|
|
trainer.fit(model, train_dataloader, val_dataloader)
|
|
|
|
|
2020-11-07 19:53:04 +00:00
|
|
|
--------
|
|
|
|
|
|
|
|
Under the hood
|
|
|
|
--------------
|
|
|
|
Under the hood, the Lightning Trainer handles the training loop details for you, some examples include:
|
|
|
|
|
2020-11-17 17:37:15 +00:00
|
|
|
- Automatically enabling/disabling grads
|
2020-11-07 19:53:04 +00:00
|
|
|
- Running the training, validation and test dataloaders
|
|
|
|
- Calling the Callbacks at the appropriate times
|
|
|
|
- Putting batches and computations on the correct devices
|
|
|
|
|
|
|
|
Here's the pseudocode for what the trainer does under the hood (showing the train loop only)
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# put model in train mode
|
|
|
|
model.train()
|
|
|
|
torch.set_grad_enabled(True)
|
|
|
|
|
|
|
|
losses = []
|
|
|
|
for batch in train_dataloader:
|
|
|
|
# calls hooks like this one
|
|
|
|
on_train_batch_start()
|
|
|
|
|
|
|
|
# train step
|
|
|
|
loss = training_step(batch)
|
|
|
|
|
|
|
|
# backward
|
|
|
|
loss.backward()
|
|
|
|
|
|
|
|
# apply and clear grads
|
|
|
|
optimizer.step()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
|
|
losses.append(loss)
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
--------
|
|
|
|
|
|
|
|
Trainer in Python scripts
|
|
|
|
-------------------------
|
|
|
|
In Python scripts, it's recommended you use a main function to call the Trainer.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
|
|
|
def main(hparams):
|
|
|
|
model = LightningModule()
|
|
|
|
trainer = Trainer(gpus=hparams.gpus)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser.add_argument('--gpus', default=None)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
main(args)
|
|
|
|
|
|
|
|
So you can run it like so:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
python main.py --gpus 2
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
Pro-tip: You don't need to define all flags manually. Lightning can add them automatically
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
model = LightningModule()
|
|
|
|
trainer = Trainer.from_argparse_args(args)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser = Trainer.add_argparse_args(parser)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
main(args)
|
|
|
|
|
|
|
|
So you can run it like so:
|
|
|
|
|
|
|
|
.. code-block:: bash
|
|
|
|
|
|
|
|
python main.py --gpus 2 --max_steps 10 --limit_train_batches 10 --any_trainer_arg x
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
If you want to stop a training run early, you can press "Ctrl + C" on your keyboard.
|
2020-12-24 18:37:30 +00:00
|
|
|
The trainer will catch the ``KeyboardInterrupt`` and attempt a graceful shutdown, including
|
|
|
|
running callbacks such as ``on_train_end``. The trainer object will also set an attribute
|
|
|
|
``interrupted`` to ``True`` in such cases. If you have a callback which shuts down compute
|
2020-11-07 19:18:45 +00:00
|
|
|
resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs.
|
|
|
|
|
|
|
|
------------
|
|
|
|
|
|
|
|
Testing
|
|
|
|
-------
|
|
|
|
Once you're done training, feel free to run the test set!
|
|
|
|
(Only right before publishing your paper or pushing to production)
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
2020-12-24 07:41:24 +00:00
|
|
|
trainer.test(test_dataloaders=test_dataloader)
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
------------
|
|
|
|
|
|
|
|
Deployment / prediction
|
|
|
|
-----------------------
|
|
|
|
You just trained a LightningModule which is also just a torch.nn.Module.
|
|
|
|
Use it to do whatever!
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# load model
|
|
|
|
pretrained_model = LightningModule.load_from_checkpoint(PATH)
|
|
|
|
pretrained_model.freeze()
|
|
|
|
|
|
|
|
# use it for finetuning
|
|
|
|
def forward(self, x):
|
|
|
|
features = pretrained_model(x)
|
|
|
|
classes = classifier(features)
|
|
|
|
|
|
|
|
# or for prediction
|
|
|
|
out = pretrained_model(x)
|
|
|
|
api_write({'response': out}
|
|
|
|
|
|
|
|
|
|
|
|
You may wish to run the model on a variety of devices. Instead of moving the data
|
|
|
|
manually to the correct device, decorate the forward method (or any other method you use for inference)
|
|
|
|
with :func:`~pytorch_lightning.core.decorators.auto_move_data` and Lightning will take care of the rest.
|
|
|
|
|
|
|
|
------------
|
|
|
|
|
|
|
|
Reproducibility
|
|
|
|
---------------
|
|
|
|
|
|
|
|
To ensure full reproducibility from run to run you need to set seeds for pseudo-random generators,
|
|
|
|
and set ``deterministic`` flag in ``Trainer``.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
from pytorch_lightning import Trainer, seed_everything
|
|
|
|
|
|
|
|
seed_everything(42)
|
|
|
|
# sets seeds for numpy, torch, python.random and PYTHONHASHSEED.
|
|
|
|
model = Model()
|
|
|
|
trainer = Trainer(deterministic=True)
|
|
|
|
|
|
|
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
Trainer flags
|
|
|
|
-------------
|
|
|
|
|
|
|
|
accelerator
|
|
|
|
^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/distributed_backend.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/distributed_backend.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The accelerator backend to use (previously known as distributed_backend).
|
|
|
|
|
2020-12-24 18:37:30 +00:00
|
|
|
- (``'dp'``) is DataParallel (split batch among GPUs of same machine)
|
|
|
|
- (``'ddp'``) is DistributedDataParallel (each gpu on each node trains, and syncs grads)
|
|
|
|
- (``'ddp_cpu'``) is DistributedDataParallel on CPU (same as ``'ddp'``, but does not use GPUs.
|
2020-11-07 19:18:45 +00:00
|
|
|
Useful for multi-node CPU training or single-node debugging. Note that this will **not** give
|
2020-12-08 21:27:43 +00:00
|
|
|
a speedup on a single node, since Torch already makes efficient use of multiple CPUs on a single
|
2020-11-07 19:18:45 +00:00
|
|
|
machine.)
|
2020-12-24 18:37:30 +00:00
|
|
|
- (``'ddp2'``) dp on node, ddp across nodes. Useful for things like increasing
|
2020-11-07 19:18:45 +00:00
|
|
|
the number of negative samples
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(accelerator=None)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# dp = DataParallel
|
|
|
|
trainer = Trainer(gpus=2, accelerator='dp')
|
|
|
|
|
|
|
|
# ddp = DistributedDataParallel
|
|
|
|
trainer = Trainer(gpus=2, num_nodes=2, accelerator='ddp')
|
|
|
|
|
|
|
|
# ddp2 = DistributedDataParallel + dp
|
|
|
|
trainer = Trainer(gpus=2, num_nodes=2, accelerator='ddp2')
|
|
|
|
|
2020-12-24 18:37:30 +00:00
|
|
|
.. note:: This option does not apply to TPU. TPUs use ``'ddp'`` by default (over each core)
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
You can also modify hardware behavior by subclassing an existing accelerator to adjust for your needs.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
class MyOwnDDP(DDPAccelerator):
|
|
|
|
...
|
|
|
|
|
|
|
|
Trainer(accelerator=MyOwnDDP())
|
|
|
|
|
|
|
|
.. warning:: Passing in custom accelerators is experimental but work is in progress to enable full compatibility.
|
|
|
|
|
|
|
|
accumulate_grad_batches
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/accumulate_grad_batches.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/accumulate_grad_batches.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Accumulates grads every k batches or as set up in the dict.
|
|
|
|
Trainer also calls ``optimizer.step()`` for the last indivisible step number.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer (no accumulation)
|
|
|
|
trainer = Trainer(accumulate_grad_batches=1)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# accumulate every 4 batches (effective batch size is batch*4)
|
|
|
|
trainer = Trainer(accumulate_grad_batches=4)
|
|
|
|
|
|
|
|
# no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
|
|
|
|
trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20})
|
|
|
|
|
|
|
|
amp_backend
|
|
|
|
^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/amp_backend.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/amp_backend.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Use PyTorch AMP ('native') (available PyTorch 1.6+), or NVIDIA apex ('apex').
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# using PyTorch built-in AMP, default used by the Trainer
|
|
|
|
trainer = Trainer(amp_backend='native')
|
|
|
|
|
|
|
|
# using NVIDIA Apex
|
|
|
|
trainer = Trainer(amp_backend='apex')
|
|
|
|
|
|
|
|
amp_level
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/amp_level.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/amp_level.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The optimization level to use (O1, O2, etc...)
|
|
|
|
for 16-bit GPU precision (using NVIDIA apex under the hood).
|
|
|
|
|
|
|
|
Check `NVIDIA apex docs <https://nvidia.github.io/apex/amp.html#opt-levels>`_ for level
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(amp_level='O2')
|
|
|
|
|
|
|
|
automatic_optimization
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
When set to False, Lightning does not automate the optimization process. This means you are responsible for your own
|
|
|
|
optimizer behavior
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
opt = self.optimizers()
|
|
|
|
|
|
|
|
loss = ...
|
|
|
|
self.manual_backward(loss, opt)
|
|
|
|
opt.step()
|
|
|
|
opt.zero_grad()
|
|
|
|
|
|
|
|
This is not recommended when using a single optimizer, instead it's recommended when using 2+ optimizers
|
|
|
|
AND you are an expert user. Most useful for research like RL, sparse coding and GAN research.
|
|
|
|
|
|
|
|
In the multi-optimizer case, ignore the optimizer_idx flag and use the optimizers directly
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
|
|
(opt_a, opt_b) = self.optimizers()
|
|
|
|
|
|
|
|
gen_loss = ...
|
|
|
|
self.manual_backward(gen_loss, opt_a)
|
|
|
|
opt_a.step()
|
|
|
|
opt_a.zero_grad()
|
|
|
|
|
|
|
|
disc_loss = ...
|
|
|
|
self.manual_backward(disc_loss, opt_b)
|
|
|
|
opt_b.step()
|
|
|
|
opt_b.zero_grad()
|
|
|
|
|
|
|
|
auto_scale_batch_size
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/auto_scale%E2%80%A8_batch_size.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/auto_scale_batch_size.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Automatically tries to find the largest batch size that fits into memory,
|
|
|
|
before any training.
|
|
|
|
|
|
|
|
.. code-block::
|
|
|
|
|
|
|
|
# default used by the Trainer (no scaling of batch size)
|
|
|
|
trainer = Trainer(auto_scale_batch_size=None)
|
|
|
|
|
|
|
|
# run batch size scaling, result overrides hparams.batch_size
|
|
|
|
trainer = Trainer(auto_scale_batch_size='binsearch')
|
|
|
|
|
|
|
|
# call tune to find the batch size
|
|
|
|
trainer.tune(model)
|
|
|
|
|
|
|
|
auto_select_gpus
|
|
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/auto_select+_gpus.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/auto_select_gpus.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
If enabled and `gpus` is an integer, pick available gpus automatically.
|
|
|
|
This is especially useful when GPUs are configured to be in "exclusive mode",
|
|
|
|
such that only one process at a time can access them.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# no auto selection (picks first 2 gpus on system, may fail if other process is occupying)
|
|
|
|
trainer = Trainer(gpus=2, auto_select_gpus=False)
|
|
|
|
|
|
|
|
# enable auto selection (will find two available gpus on system)
|
|
|
|
trainer = Trainer(gpus=2, auto_select_gpus=True)
|
|
|
|
|
|
|
|
# specifies all GPUs regardless of its availability
|
|
|
|
Trainer(gpus=-1, auto_select_gpus=False)
|
|
|
|
|
|
|
|
# specifies all available GPUs (if only one GPU is not occupied, uses one gpu)
|
|
|
|
Trainer(gpus=-1, auto_select_gpus=True)
|
|
|
|
|
|
|
|
auto_lr_find
|
|
|
|
^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/auto_lr_find.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/auto_lr_find.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Runs a learning rate finder algorithm (see this `paper <https://arxiv.org/abs/1506.01186>`_)
|
|
|
|
when calling trainer.tune(), to find optimal initial learning rate.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# default used by the Trainer (no learning rate finder)
|
|
|
|
trainer = Trainer(auto_lr_find=False)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# run learning rate finder, results override hparams.learning_rate
|
|
|
|
trainer = Trainer(auto_lr_find=True)
|
|
|
|
|
|
|
|
# call tune to find the lr
|
|
|
|
trainer.tune(model)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# run learning rate finder, results override hparams.my_lr_arg
|
|
|
|
trainer = Trainer(auto_lr_find='my_lr_arg')
|
|
|
|
|
|
|
|
# call tune to find the lr
|
|
|
|
trainer.tune(model)
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
See the :ref:`learning rate finder guide <lr_finder>`.
|
|
|
|
|
|
|
|
benchmark
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/benchmark.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/benchmark.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
If true enables cudnn.benchmark.
|
|
|
|
This flag is likely to increase the speed of your system if your
|
|
|
|
input sizes don't change. However, if it does, then it will likely
|
|
|
|
make your system slower.
|
|
|
|
|
|
|
|
The speedup comes from allowing the cudnn auto-tuner to find the best
|
|
|
|
algorithm for the hardware `[see discussion here]
|
|
|
|
<https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936>`_.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(benchmark=False)
|
|
|
|
|
|
|
|
deterministic
|
|
|
|
^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/deterministic.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/deterministic.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
If true enables cudnn.deterministic.
|
|
|
|
Might make your system slower, but ensures reproducibility.
|
|
|
|
Also sets ``$HOROVOD_FUSION_THRESHOLD=0``.
|
|
|
|
|
|
|
|
For more info check `[pytorch docs]
|
|
|
|
<https://pytorch.org/docs/stable/notes/randomness.html>`_.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(deterministic=False)
|
|
|
|
|
|
|
|
callbacks
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/callbacks.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/callbacks.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Add a list of :class:`~pytorch_lightning.callbacks.Callback`.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# a list of callbacks
|
|
|
|
callbacks = [PrintCallback()]
|
|
|
|
trainer = Trainer(callbacks=callbacks)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
from pytorch_lightning.callbacks import Callback
|
|
|
|
|
|
|
|
class PrintCallback(Callback):
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
|
|
print("Training is started!")
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
|
|
print("Training is done.")
|
|
|
|
|
|
|
|
check_val_every_n_epoch
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/check_val_every_n_epoch.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/check_val_every_n_epoch.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Check val every n train epochs.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(check_val_every_n_epoch=1)
|
|
|
|
|
|
|
|
# run val loop every 10 training epochs
|
|
|
|
trainer = Trainer(check_val_every_n_epoch=10)
|
|
|
|
|
|
|
|
checkpoint_callback
|
|
|
|
^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/checkpoint_callback.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/checkpoint_callback.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
By default Lightning saves a checkpoint for you in your current working directory, with the state of your last training epoch,
|
|
|
|
Checkpoints capture the exact value of all parameters used by a model.
|
|
|
|
To disable automatic checkpointing, set this to `False`.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# default used by Trainer
|
|
|
|
trainer = Trainer(checkpoint_callback=True)
|
|
|
|
|
|
|
|
# turn off automatic checkpointing
|
|
|
|
trainer = Trainer(checkpoint_callback=False)
|
|
|
|
|
|
|
|
|
|
|
|
You can override the default behavior by initializing the :class:`~pytorch_lightning.callbacks.ModelCheckpoint`
|
|
|
|
callback, and adding it to the :paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks` list.
|
|
|
|
See :ref:`Saving and Loading Weights <weights_loading>` for how to customize checkpointing.
|
|
|
|
|
2020-11-22 06:35:54 +00:00
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
|
# Init ModelCheckpoint callback, monitoring 'val_loss'
|
|
|
|
checkpoint_callback = ModelCheckpoint(monitor='val_loss')
|
|
|
|
|
|
|
|
# Add your callback to the callbacks list
|
|
|
|
trainer = Trainer(callbacks=[checkpoint_callback])
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
.. warning:: Passing a ModelCheckpoint instance to this argument is deprecated since
|
2020-11-22 06:35:54 +00:00
|
|
|
v1.1 and will be unsupported from v1.3. Use `callbacks` argument instead.
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
|
|
|
|
default_root_dir
|
|
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/default%E2%80%A8_root_dir.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/default_root_dir.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Default path for logs and weights when no logger or
|
|
|
|
:class:`pytorch_lightning.callbacks.ModelCheckpoint` callback passed. On
|
|
|
|
certain clusters you might want to separate where logs and checkpoints are
|
|
|
|
stored. If you don't then use this argument for convenience. Paths can be local
|
|
|
|
paths or remote paths such as `s3://bucket/path` or 'hdfs://path/'. Credentials
|
|
|
|
will need to be set up to use remote filepaths.
|
|
|
|
|
2020-12-03 00:17:34 +00:00
|
|
|
.. testcode::
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
# default used by the Trainer
|
2020-12-03 00:17:34 +00:00
|
|
|
trainer = Trainer(default_root_dir=os.getcwd())
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
distributed_backend
|
|
|
|
^^^^^^^^^^^^^^^^^^^
|
2020-12-24 18:37:30 +00:00
|
|
|
Deprecated: This has been renamed ``accelerator``.
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
fast_dev_run
|
|
|
|
^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/fast_dev_run.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/fast_dev_run.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2020-12-08 20:07:53 +00:00
|
|
|
Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test
|
|
|
|
to find any bugs (ie: a sort of unit test).
|
2020-11-07 19:18:45 +00:00
|
|
|
|
2020-12-08 20:07:53 +00:00
|
|
|
Under the hood the pseudocode looks like this when running *fast_dev_run* with a single batch:
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# loading
|
|
|
|
__init__()
|
|
|
|
prepare_data
|
|
|
|
|
|
|
|
# test training step
|
|
|
|
training_batch = next(train_dataloader)
|
|
|
|
training_step(training_batch)
|
|
|
|
|
|
|
|
# test val step
|
|
|
|
val_batch = next(val_dataloader)
|
|
|
|
out = validation_step(val_batch)
|
|
|
|
validation_epoch_end([out])
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(fast_dev_run=False)
|
|
|
|
|
|
|
|
# runs 1 train, val, test batch and program ends
|
|
|
|
trainer = Trainer(fast_dev_run=True)
|
|
|
|
|
2020-12-08 20:07:53 +00:00
|
|
|
# runs 7 train, val, test batches and program ends
|
|
|
|
trainer = Trainer(fast_dev_run=7)
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
This argument is a bit different from ``limit_train/val/test_batches``. Setting this argument will
|
|
|
|
disable tuner, logger callbacks like ``LearningRateLogger`` and runs for only 1 epoch. This must be
|
|
|
|
used only for debugging purposes. ``limit_train/val/test_batches`` only limits the number of batches and won't
|
|
|
|
disable anything.
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
flush_logs_every_n_steps
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/flush_logs%E2%80%A8_every_n_steps.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/flush_logs_every_n_steps.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Writes logs to disk this often.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(flush_logs_every_n_steps=100)
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
- :ref:`logging`
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
gpus
|
|
|
|
^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/gpus.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/gpus.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- Number of GPUs to train on (int)
|
|
|
|
- or which GPUs to train on (list)
|
|
|
|
- can handle strings
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer (ie: train on CPU)
|
|
|
|
trainer = Trainer(gpus=None)
|
|
|
|
|
|
|
|
# equivalent
|
|
|
|
trainer = Trainer(gpus=0)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# int: train on 2 gpus
|
|
|
|
trainer = Trainer(gpus=2)
|
|
|
|
|
|
|
|
# list: train on GPUs 1, 4 (by bus ordering)
|
|
|
|
trainer = Trainer(gpus=[1, 4])
|
|
|
|
trainer = Trainer(gpus='1, 4') # equivalent
|
|
|
|
|
|
|
|
# -1: train on all gpus
|
|
|
|
trainer = Trainer(gpus=-1)
|
|
|
|
trainer = Trainer(gpus='-1') # equivalent
|
|
|
|
|
|
|
|
# combine with num_nodes to train on multiple GPUs across nodes
|
|
|
|
# uses 8 gpus in total
|
|
|
|
trainer = Trainer(gpus=2, num_nodes=4)
|
|
|
|
|
|
|
|
# train only on GPUs 1 and 4 across nodes
|
|
|
|
trainer = Trainer(gpus=[1, 4], num_nodes=4)
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
- :ref:`Multi-GPU training guide <multi_gpu>`.
|
|
|
|
|
|
|
|
gradient_clip_val
|
|
|
|
^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/gradient+_clip_val.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/gradient_clip_val.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gradient clipping value
|
|
|
|
|
|
|
|
- 0 means don't clip.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(gradient_clip_val=0.0)
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
limit_train_batches
|
|
|
|
^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/limit_train_batches.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/limit_batches.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
How much of training dataset to check.
|
|
|
|
Useful when debugging or testing something that happens at the end of an epoch.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(limit_train_batches=1.0)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(limit_train_batches=1.0)
|
|
|
|
|
|
|
|
# run through only 25% of the training set each epoch
|
|
|
|
trainer = Trainer(limit_train_batches=0.25)
|
|
|
|
|
|
|
|
# run through only 10 batches of the training set each epoch
|
|
|
|
trainer = Trainer(limit_train_batches=10)
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
limit_test_batches
|
|
|
|
^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/limit_test_batches.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/limit_batches.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
How much of test dataset to check.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(limit_test_batches=1.0)
|
|
|
|
|
|
|
|
# run through only 25% of the test set each epoch
|
|
|
|
trainer = Trainer(limit_test_batches=0.25)
|
|
|
|
|
|
|
|
# run for only 10 batches
|
|
|
|
trainer = Trainer(limit_test_batches=10)
|
|
|
|
|
|
|
|
In the case of multiple test dataloaders, the limit applies to each dataloader individually.
|
|
|
|
|
|
|
|
limit_val_batches
|
|
|
|
^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/limit_val_batches.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/limit_batches.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
How much of validation dataset to check.
|
|
|
|
Useful when debugging or testing something that happens at the end of an epoch.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(limit_val_batches=1.0)
|
|
|
|
|
|
|
|
# run through only 25% of the validation set each epoch
|
|
|
|
trainer = Trainer(limit_val_batches=0.25)
|
|
|
|
|
|
|
|
# run for only 10 batches
|
|
|
|
trainer = Trainer(limit_val_batches=10)
|
|
|
|
|
|
|
|
In the case of multiple validation dataloaders, the limit applies to each dataloader individually.
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
log_every_n_steps
|
|
|
|
^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/log_every_n_steps.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/log_every_n_steps.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
How often to add logging rows (does not write to disk)
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(log_every_n_steps=50)
|
|
|
|
|
|
|
|
See Also:
|
|
|
|
- :ref:`logging`
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
log_gpu_memory
|
|
|
|
^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/log_gpu_memory.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/log_gpu_memory.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Options:
|
|
|
|
|
|
|
|
- None
|
|
|
|
- 'min_max'
|
|
|
|
- 'all'
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(log_gpu_memory=None)
|
|
|
|
|
|
|
|
# log all the GPUs (on master node only)
|
|
|
|
trainer = Trainer(log_gpu_memory='all')
|
|
|
|
|
|
|
|
# log only the min and max memory on the master node
|
|
|
|
trainer = Trainer(log_gpu_memory='min_max')
|
|
|
|
|
2020-12-24 18:37:30 +00:00
|
|
|
.. note:: Might slow performance because it uses the output of ``nvidia-smi``.
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
logger
|
|
|
|
^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/logger.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/logger.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:ref:`Logger <loggers>` (or iterable collection of loggers) for experiment tracking.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
from pytorch_lightning.loggers import TensorBoardLogger
|
|
|
|
|
|
|
|
# default logger used by trainer
|
|
|
|
logger = TensorBoardLogger(
|
|
|
|
save_dir=os.getcwd(),
|
|
|
|
version=1,
|
|
|
|
name='lightning_logs'
|
|
|
|
)
|
|
|
|
Trainer(logger=logger)
|
|
|
|
|
|
|
|
max_epochs
|
|
|
|
^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/max_epochs.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/min_max_epochs.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Stop training once this number of epochs is reached
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(max_epochs=1000)
|
|
|
|
|
|
|
|
min_epochs
|
|
|
|
^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/min_epochs.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/min_max_epochs.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Force training for at least these many epochs
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(min_epochs=1)
|
|
|
|
|
|
|
|
max_steps
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/max_steps.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/min_max_steps.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Stop training after this number of steps
|
|
|
|
Training will stop if max_steps or max_epochs have reached (earliest).
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# Default (disabled)
|
|
|
|
trainer = Trainer(max_steps=None)
|
|
|
|
|
|
|
|
# Stop after 100 steps
|
|
|
|
trainer = Trainer(max_steps=100)
|
|
|
|
|
|
|
|
min_steps
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/min_steps.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/min_max_steps.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Force training for at least these number of steps.
|
|
|
|
Trainer will train model for at least min_steps or min_epochs (latest).
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# Default (disabled)
|
|
|
|
trainer = Trainer(min_steps=None)
|
|
|
|
|
|
|
|
# Run at least for 100 steps (disable min_epochs)
|
|
|
|
trainer = Trainer(min_steps=100, min_epochs=0)
|
|
|
|
|
|
|
|
num_nodes
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/num_nodes.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/num_nodes.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Number of GPU nodes for distributed training.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(num_nodes=1)
|
|
|
|
|
|
|
|
# to train on 8 nodes
|
|
|
|
trainer = Trainer(num_nodes=8)
|
|
|
|
|
|
|
|
num_processes
|
|
|
|
^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/num_processes.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/num_processes.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Number of processes to train with. Automatically set to the number of GPUs
|
|
|
|
when using ``accelerator="ddp"``. Set to a number greater than 1 when
|
|
|
|
using ``accelerator="ddp_cpu"`` to mimic distributed training on a
|
|
|
|
machine without GPUs. This is useful for debugging, but **will not** provide
|
2020-12-08 21:27:43 +00:00
|
|
|
any speedup, since single-process Torch already makes efficient use of multiple
|
2020-11-07 19:18:45 +00:00
|
|
|
CPUs.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# Simulate DDP for debugging on your GPU-less laptop
|
|
|
|
trainer = Trainer(accelerator="ddp_cpu", num_processes=2)
|
|
|
|
|
|
|
|
num_sanity_val_steps
|
|
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/num_sanity%E2%80%A8_val_steps.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/num_sanity_val_steps.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sanity check runs n batches of val before starting the training routine.
|
|
|
|
This catches any bugs in your validation without having to wait for the first validation check.
|
|
|
|
The Trainer uses 2 steps by default. Turn it off or modify it here.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(num_sanity_val_steps=2)
|
|
|
|
|
|
|
|
# turn it off
|
|
|
|
trainer = Trainer(num_sanity_val_steps=0)
|
|
|
|
|
|
|
|
# check all validation data
|
|
|
|
trainer = Trainer(num_sanity_val_steps=-1)
|
|
|
|
|
|
|
|
|
|
|
|
This option will reset the validation dataloader unless ``num_sanity_val_steps=0``.
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
overfit_batches
|
|
|
|
^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/overfit_batches.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/overfit_batches.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Uses this much data of the training set. If nonzero, will use the same training set for validation and testing.
|
|
|
|
If the training dataloaders have `shuffle=True`, Lightning will automatically disable it.
|
|
|
|
|
|
|
|
Useful for quickly debugging or trying to overfit on purpose.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(overfit_batches=0.0)
|
|
|
|
|
|
|
|
# use only 1% of the train set (and use the train set for val and test)
|
|
|
|
trainer = Trainer(overfit_batches=0.01)
|
|
|
|
|
|
|
|
# overfit on 10 of the same batches
|
|
|
|
trainer = Trainer(overfit_batches=10)
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
plugins
|
|
|
|
^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/cluster_environment.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/cluster_environment.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Plugins allow you to connect arbitrary backends, precision libraries, SLURM, etc... For example:
|
|
|
|
|
|
|
|
- DDP
|
|
|
|
- SLURM
|
|
|
|
- TorchElastic
|
|
|
|
- Apex
|
|
|
|
|
|
|
|
To define your own behavior, subclass the relevant class and pass it in. Here's an example linking up your own cluster.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from pytorch_lightning.cluster_environments import cluster_environment
|
|
|
|
|
|
|
|
class MyCluster(ClusterEnvironment):
|
|
|
|
|
|
|
|
def master_address(self):
|
|
|
|
return your_master_address
|
|
|
|
|
|
|
|
def master_port(self):
|
|
|
|
return your_master_port
|
|
|
|
|
|
|
|
def world_size(self):
|
|
|
|
return the_world_size
|
|
|
|
|
|
|
|
trainer = Trainer(cluster_environment=cluster_environment())
|
|
|
|
|
|
|
|
prepare_data_per_node
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/prepare_data_per_node.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/prepare_data_per_node.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
If True will call `prepare_data()` on LOCAL_RANK=0 for every node.
|
|
|
|
If False will only call from NODE_RANK=0, LOCAL_RANK=0
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default
|
|
|
|
Trainer(prepare_data_per_node=True)
|
|
|
|
|
|
|
|
# use only NODE_RANK=0, LOCAL_RANK=0
|
|
|
|
Trainer(prepare_data_per_node=False)
|
|
|
|
|
|
|
|
precision
|
|
|
|
^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/precision.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/precision.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Full precision (32), half precision (16).
|
|
|
|
Can be used on CPU, GPU or TPUs.
|
|
|
|
|
|
|
|
If used on TPU will use torch.bfloat16 but tensor printing
|
|
|
|
will still show torch.float32.
|
|
|
|
|
|
|
|
.. testcode::
|
2020-12-14 14:49:05 +00:00
|
|
|
:skipif: not _APEX_AVAILABLE and not _NATIVE_AMP_AVAILABLE
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(precision=32)
|
|
|
|
|
|
|
|
# 16-bit precision
|
|
|
|
trainer = Trainer(precision=16)
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# one day
|
|
|
|
trainer = Trainer(precision=8|4|2)
|
|
|
|
|
|
|
|
process_position
|
|
|
|
^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/process_position.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/process_position.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Orders the progress bar. Useful when running multiple trainers on the same node.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(process_position=0)
|
|
|
|
|
2020-12-08 20:07:53 +00:00
|
|
|
.. note:: This argument is ignored if a custom callback is passed to :paramref:`~Trainer.callbacks`.
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
profiler
|
|
|
|
^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/profiler.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/profiler.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
To profile individual steps during training and assist in identifying bottlenecks.
|
|
|
|
|
|
|
|
See the :ref:`profiler documentation <profiler>`. for more details.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(profiler=None)
|
|
|
|
|
|
|
|
# to profile standard training events, equivalent to `profiler=SimpleProfiler()`
|
|
|
|
trainer = Trainer(profiler="simple")
|
|
|
|
|
|
|
|
# advanced profiler for function-level stats, equivalent to `profiler=AdvancedProfiler()`
|
|
|
|
trainer = Trainer(profiler="advanced")
|
|
|
|
|
|
|
|
progress_bar_refresh_rate
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/progress_bar%E2%80%A8_refresh_rate.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/progress_bar_refresh_rate.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
How often to refresh progress bar (in steps).
|
|
|
|
In notebooks, faster refresh rates (lower number) is known to crash them
|
|
|
|
because of their screen refresh rates, so raise it to 50 or more.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(progress_bar_refresh_rate=1)
|
|
|
|
|
|
|
|
# disable progress bar
|
|
|
|
trainer = Trainer(progress_bar_refresh_rate=0)
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This argument is ignored if a custom callback is passed to :paramref:`~Trainer.callbacks`.
|
|
|
|
|
|
|
|
reload_dataloaders_every_epoch
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/reload_%E2%80%A8dataloaders_%E2%80%A8every_epoch.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/reload_dataloaders_every_epoch.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Set to True to reload dataloaders every epoch.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# if False (default)
|
|
|
|
train_loader = model.train_dataloader()
|
|
|
|
for epoch in epochs:
|
|
|
|
for batch in train_loader:
|
|
|
|
...
|
|
|
|
|
|
|
|
# if True
|
|
|
|
for epoch in epochs:
|
|
|
|
train_loader = model.train_dataloader()
|
|
|
|
for batch in train_loader:
|
|
|
|
|
|
|
|
replace_sampler_ddp
|
|
|
|
^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/replace_sampler_ddp.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/replace_sampler_ddp.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Enables auto adding of distributed sampler. By default it will add ``shuffle=True``
|
|
|
|
for train sampler and ``shuffle=False`` for val/test sampler. If you want to customize
|
|
|
|
it, you can set ``replace_sampler_ddp=False`` and add your own distributed sampler.
|
|
|
|
If ``replace_sampler_ddp=True`` and a distributed sampler was already added,
|
|
|
|
Lightning will not replace the existing one.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(replace_sampler_ddp=True)
|
|
|
|
|
|
|
|
By setting to False, you have to add your own distributed sampler:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
|
|
|
|
dataloader = DataLoader(dataset, batch_size=32, sampler=sampler)
|
|
|
|
|
|
|
|
resume_from_checkpoint
|
|
|
|
^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/resume_from_checkpoint.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/resume_from_checkpoint.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
To resume training from a specific checkpoint pass in the path here.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(resume_from_checkpoint=None)
|
|
|
|
|
|
|
|
# resume from a specific checkpoint
|
|
|
|
trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt')
|
|
|
|
|
|
|
|
sync_batchnorm
|
|
|
|
^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/sync_batchnorm.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/sync_batchnorm.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Enable synchronization between batchnorm layers across all GPUs.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
trainer = Trainer(sync_batchnorm=True)
|
|
|
|
|
|
|
|
track_grad_norm
|
|
|
|
^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/track_grad_norm.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/track_grad_norm.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- no tracking (-1)
|
|
|
|
- Otherwise tracks that norm (2 for 2-norm)
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(track_grad_norm=-1)
|
|
|
|
|
|
|
|
# track the 2-norm
|
|
|
|
trainer = Trainer(track_grad_norm=2)
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
tpu_cores
|
|
|
|
^^^^^^^^^
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
2021-01-04 14:05:24 +00:00
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/tpu_cores.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/tpu_cores.mp4"></video>
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
- How many TPU cores to train on (1 or 8).
|
|
|
|
- Which TPU core to train on [1-8]
|
2020-11-07 19:18:45 +00:00
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
A single TPU v2 or v3 has 8 cores. A TPU pod has
|
|
|
|
up to 2048 cores. A slice of a POD means you get as many cores
|
|
|
|
as you request.
|
2020-11-07 19:18:45 +00:00
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
Your effective batch size is batch_size * total tpu cores.
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
No need to add a :class:`~torch.utils.data.distributed.DistributedSampler`,
|
|
|
|
Lightning automatically does it for you.
|
|
|
|
|
|
|
|
This parameter can be either 1 or 8.
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
Example::
|
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
# your_trainer_file.py
|
2020-11-07 19:18:45 +00:00
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
# default used by the Trainer (ie: train on CPU)
|
|
|
|
trainer = Trainer(tpu_cores=None)
|
2020-11-07 19:18:45 +00:00
|
|
|
|
2021-01-04 14:05:24 +00:00
|
|
|
# int: train on a single core
|
|
|
|
trainer = Trainer(tpu_cores=1)
|
|
|
|
|
|
|
|
# list: train on a single selected core
|
|
|
|
trainer = Trainer(tpu_cores=[2])
|
|
|
|
|
|
|
|
# int: train on all cores few cores
|
|
|
|
trainer = Trainer(tpu_cores=8)
|
|
|
|
|
|
|
|
# for 8+ cores must submit via xla script with
|
|
|
|
# a max of 8 cores specified. The XLA script
|
|
|
|
# will duplicate script onto each TPU in the POD
|
|
|
|
trainer = Trainer(tpu_cores=8)
|
|
|
|
|
|
|
|
To train on more than 8 cores (ie: a POD),
|
|
|
|
submit this script using the xla_dist script.
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
python -m torch_xla.distributed.xla_dist
|
|
|
|
--tpu=$TPU_POD_NAME
|
|
|
|
--conda-env=torch-xla-nightly
|
|
|
|
--env=XLA_USE_BF16=1
|
|
|
|
-- python your_trainer_file.py
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
truncated_bptt_steps
|
|
|
|
^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/truncated_bptt_steps.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/truncated_bptt_steps.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Truncated back prop breaks performs backprop every k steps of
|
|
|
|
a much longer sequence.
|
|
|
|
|
|
|
|
If this is enabled, your batches will automatically get truncated
|
|
|
|
and the trainer will apply Truncated Backprop to it.
|
|
|
|
|
|
|
|
(`Williams et al. "An efficient gradient-based algorithm for on-line training of
|
|
|
|
recurrent network trajectories."
|
|
|
|
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf>`_)
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer (ie: disabled)
|
|
|
|
trainer = Trainer(truncated_bptt_steps=None)
|
|
|
|
|
|
|
|
# backprop every 5 steps in a batch
|
|
|
|
trainer = Trainer(truncated_bptt_steps=5)
|
|
|
|
|
|
|
|
.. note:: Make sure your batches have a sequence dimension.
|
|
|
|
|
|
|
|
Lightning takes care to split your batch along the time-dimension.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# we use the second as the time dimension
|
|
|
|
# (batch, time, ...)
|
|
|
|
sub_batch = batch[0, 0:t, ...]
|
|
|
|
|
|
|
|
Using this feature requires updating your LightningModule's
|
|
|
|
:meth:`pytorch_lightning.core.LightningModule.training_step` to include a `hiddens` arg
|
|
|
|
with the hidden
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
# Truncated back-propagation through time
|
|
|
|
def training_step(self, batch, batch_idx, hiddens):
|
|
|
|
# hiddens are the hiddens from the previous truncated backprop step
|
|
|
|
out, hiddens = self.lstm(data, hiddens)
|
|
|
|
|
2020-11-19 16:53:10 +00:00
|
|
|
# remember to detach() hiddens.
|
|
|
|
# If you don't, you will get a RuntimeError: Trying to backward through
|
|
|
|
# the graph a second time...
|
|
|
|
# Using hiddens.detach() allows each split to be disconnected.
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
return {
|
|
|
|
"loss": ...,
|
|
|
|
"hiddens": hiddens # remember to detach() this
|
|
|
|
}
|
|
|
|
|
|
|
|
To modify how the batch is split,
|
|
|
|
override :meth:`pytorch_lightning.core.LightningModule.tbptt_split_batch`:
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
class LitMNIST(LightningModule):
|
|
|
|
def tbptt_split_batch(self, batch, split_size):
|
|
|
|
# do your own splitting on the batch
|
|
|
|
return splits
|
|
|
|
|
|
|
|
val_check_interval
|
|
|
|
^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/val_check_interval.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/val_check_interval.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
How often within one training epoch to check the validation set.
|
|
|
|
Can specify as float or int.
|
|
|
|
|
|
|
|
- use (float) to check within a training epoch
|
|
|
|
- use (int) to check every n steps (batches)
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(val_check_interval=1.0)
|
|
|
|
|
|
|
|
# check validation set 4 times during a training epoch
|
|
|
|
trainer = Trainer(val_check_interval=0.25)
|
|
|
|
|
|
|
|
# check validation set every 1000 training batches
|
|
|
|
# use this when using iterableDataset and your dataset has no length
|
|
|
|
# (ie: production cases with streaming data)
|
|
|
|
trainer = Trainer(val_check_interval=1000)
|
|
|
|
|
|
|
|
|
|
|
|
weights_save_path
|
|
|
|
^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/weights_save_path.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/weights_save_path.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Directory of where to save weights if specified.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer
|
|
|
|
trainer = Trainer(weights_save_path=os.getcwd())
|
|
|
|
|
|
|
|
# save to your custom path
|
|
|
|
trainer = Trainer(weights_save_path='my/path')
|
|
|
|
|
|
|
|
Example::
|
|
|
|
|
|
|
|
# if checkpoint callback used, then overrides the weights path
|
|
|
|
# **NOTE: this saves weights to some/path NOT my/path
|
|
|
|
checkpoint = ModelCheckpoint(dirpath='some/path')
|
|
|
|
trainer = Trainer(
|
|
|
|
callbacks=[checkpoint],
|
|
|
|
weights_save_path='my/path'
|
|
|
|
)
|
|
|
|
|
|
|
|
weights_summary
|
|
|
|
^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
.. raw:: html
|
|
|
|
|
|
|
|
<video width="50%" max-width="400px" controls
|
|
|
|
poster="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/thumb/weights_summary.jpg"
|
|
|
|
src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/trainer_flags/weights_summary.mp4"></video>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Prints a summary of the weights when training begins.
|
|
|
|
Options: 'full', 'top', None.
|
|
|
|
|
|
|
|
.. testcode::
|
|
|
|
|
|
|
|
# default used by the Trainer (ie: print summary of top level modules)
|
|
|
|
trainer = Trainer(weights_summary='top')
|
|
|
|
|
|
|
|
# print full summary of all modules and submodules
|
|
|
|
trainer = Trainer(weights_summary='full')
|
|
|
|
|
|
|
|
# don't print a summary
|
|
|
|
trainer = Trainer(weights_summary=None)
|
|
|
|
|
|
|
|
-----
|
|
|
|
|
|
|
|
Trainer class API
|
|
|
|
-----------------
|
|
|
|
|
|
|
|
Methods
|
|
|
|
^^^^^^^
|
|
|
|
|
|
|
|
init
|
|
|
|
****
|
|
|
|
|
|
|
|
.. automethod:: pytorch_lightning.trainer.Trainer.__init__
|
|
|
|
:noindex:
|
|
|
|
|
|
|
|
fit
|
|
|
|
****
|
|
|
|
|
|
|
|
.. automethod:: pytorch_lightning.trainer.Trainer.fit
|
|
|
|
:noindex:
|
|
|
|
|
|
|
|
test
|
|
|
|
****
|
|
|
|
|
|
|
|
.. automethod:: pytorch_lightning.trainer.Trainer.test
|
|
|
|
:noindex:
|
|
|
|
|
|
|
|
tune
|
|
|
|
****
|
|
|
|
|
|
|
|
.. automethod:: pytorch_lightning.trainer.Trainer.tune
|
|
|
|
:noindex:
|
|
|
|
|
|
|
|
Properties
|
|
|
|
^^^^^^^^^^
|
|
|
|
|
|
|
|
callback_metrics
|
|
|
|
****************
|
|
|
|
|
|
|
|
The metrics available to callbacks. These are automatically set when you log via `self.log`
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
self.log('a_val', 2)
|
|
|
|
|
|
|
|
|
|
|
|
callback_metrics = trainer.callback_metrics
|
|
|
|
assert callback_metrics['a_val'] == 2
|
|
|
|
|
|
|
|
current_epoch
|
|
|
|
*************
|
|
|
|
|
|
|
|
The current epoch
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
current_epoch = self.trainer.current_epoch
|
|
|
|
if current_epoch > 100:
|
|
|
|
# do something
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
logger (p)
|
|
|
|
**********
|
|
|
|
|
|
|
|
The current logger being used. Here's an example using tensorboard
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
logger = self.trainer.logger
|
|
|
|
tensorboard = logger.experiment
|
|
|
|
|
|
|
|
|
|
|
|
logged_metrics
|
|
|
|
**************
|
|
|
|
|
|
|
|
The metrics sent to the logger (visualizer).
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
self.log('a_val', 2, log=True)
|
|
|
|
|
|
|
|
|
|
|
|
logged_metrics = trainer.logged_metrics
|
|
|
|
assert logged_metrics['a_val'] == 2
|
|
|
|
|
2020-11-08 17:16:22 +00:00
|
|
|
log_dir
|
|
|
|
*******
|
|
|
|
The directory for the current experiment. Use this to save images to, etc...
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
img = ...
|
|
|
|
save_img(img, self.trainer.log_dir)
|
|
|
|
|
|
|
|
|
2020-11-07 19:18:45 +00:00
|
|
|
|
|
|
|
is_global_zero
|
|
|
|
**************
|
|
|
|
|
|
|
|
Whether this process is the global zero in multi-node training
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
if self.trainer.is_global_zero:
|
|
|
|
print('in node 0, accelerator 0')
|
|
|
|
|
|
|
|
progress_bar_metrics
|
|
|
|
********************
|
|
|
|
|
|
|
|
The metrics sent to the progress bar.
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
self.log('a_val', 2, prog_bar=True)
|
|
|
|
|
|
|
|
|
|
|
|
progress_bar_metrics = trainer.progress_bar_metrics
|
|
|
|
assert progress_bar_metrics['a_val'] == 2
|