Add labels to sphinx docs (#2964)
* Add label * add ref * add ref * add ref * add label * add label * add label * add label * Update fast_training.rst * label * label * label * label * label * label * label * label * label * label * label * Update performance.rst * Update production_inference.rst * Update profiler.rst * Update results.rst * Update sequences.rst * Update single_gpu.rst * Update slurm.rst * Update test_set.rst * Update tpu.rst * Update trainer.rst * Update training_tricks.rst * Update transfer_learning.rst * Update weights_loading.rst * Update governance.rst * Update hooks.rst * Update bolts.rst * Update child_modules.rst * Update hyperparameters.rst * Update transfer_learning.rst
This commit is contained in:
parent
b7fc805dcf
commit
5e7ae348b4
|
@ -2,6 +2,7 @@
|
|||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _16-bit:
|
||||
|
||||
16-bit training
|
||||
=================
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
def val_dataloader():
|
||||
pass
|
||||
|
||||
|
||||
Child Modules
|
||||
-------------
|
||||
Research projects tend to test different approaches to the same dataset.
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _data-modules:
|
||||
|
||||
LightningDataModule
|
||||
===================
|
||||
A datamodule is a shareable, reusable class that encapsulates all the steps needed to process data:
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _debugging:
|
||||
|
||||
Debugging
|
||||
=========
|
||||
|
@ -129,4 +131,4 @@ argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`)
|
|||
.. testcode::
|
||||
|
||||
# DEFAULT
|
||||
trainer = Trainer(num_sanity_val_steps=2)
|
||||
trainer = Trainer(num_sanity_val_steps=2)
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
|
||||
|
||||
.. _early-stopping:
|
||||
|
||||
Early stopping
|
||||
==============
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
|
||||
.. _experiment-logging:
|
||||
|
||||
Experiment Logging
|
||||
==================
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _experiment-reporting:
|
||||
|
||||
Experiment Reporting
|
||||
=====================
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _fast-training:
|
||||
|
||||
Fast Training
|
||||
=============
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _governance:
|
||||
|
||||
Pytorch Lightning Governance | Persons of interest
|
||||
==================================================
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _hooks:
|
||||
|
||||
Model Hooks
|
||||
===========
|
||||
|
||||
|
@ -88,4 +90,4 @@ General hooks
|
|||
-------------
|
||||
|
||||
.. automodule:: pytorch_lightning.core.hooks
|
||||
:noindex:
|
||||
:noindex:
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
import sys
|
||||
sys.argv = ['foo']
|
||||
|
||||
|
||||
Hyperparameters
|
||||
---------------
|
||||
Lightning has utilities to interact seamlessly with the command line ArgumentParser
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _introduction-guide:
|
||||
|
||||
Step-by-step walk-through
|
||||
=========================
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
.. _lightning-module:
|
||||
|
||||
LightningModule
|
||||
===============
|
||||
|
|
|
@ -6,6 +6,8 @@
|
|||
|
||||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
.. _loggers:
|
||||
|
||||
Loggers
|
||||
===========
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
|
||||
.. _lr_finder:
|
||||
|
||||
Learning Rate Finder
|
||||
--------------------
|
||||
|
|
|
@ -5,6 +5,8 @@
|
|||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.metrics import TensorMetric, NumpyMetric
|
||||
|
||||
.. _metrics:
|
||||
|
||||
Metrics
|
||||
=======
|
||||
This is a general package for PyTorch Metrics. These can also be used with regular non-lightning PyTorch code.
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
|
||||
.. _multiple_loaders:
|
||||
|
||||
Multiple Datasets
|
||||
=================
|
||||
Lightning supports multiple dataloaders in a few ways.
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
.. _quick-start:
|
||||
|
||||
Quick Start
|
||||
===========
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _optimizers:
|
||||
|
||||
Optimization
|
||||
===============
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _performance:
|
||||
|
||||
Fast Performance
|
||||
================
|
||||
Here are some best practices to increase your performance.
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _production-inference:
|
||||
|
||||
Inference in Production
|
||||
=======================
|
||||
PyTorch Lightning eases the process of deploying models into production.
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
.. _profiler:
|
||||
|
||||
Performance and Bottleneck Profiler
|
||||
===================================
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _result:
|
||||
|
||||
Result
|
||||
======
|
||||
Lightning has two results objects `TrainResult` and `EvalResult`.
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
from torch.utils.data import IterableDataset
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _sequences:
|
||||
|
||||
Sequential Data
|
||||
================
|
||||
|
|
|
@ -2,6 +2,8 @@
|
|||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _single-gpu:
|
||||
|
||||
Single GPU Training
|
||||
===================
|
||||
Make sure you are running on a machine that has at least one GPU. Lightning handles all the NVIDIA flags for you,
|
||||
|
@ -11,4 +13,4 @@ there's no need to set them yourself.
|
|||
:skipif: torch.cuda.device_count() < 1
|
||||
|
||||
# train on 1 GPU (using dp mode)
|
||||
trainer = Trainer(gpus=1)
|
||||
trainer = Trainer(gpus=1)
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _slurm:
|
||||
|
||||
Computing cluster (SLURM)
|
||||
=========================
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _test-set:
|
||||
|
||||
Test set
|
||||
========
|
||||
Lightning forces the user to run the test set separately to make sure it isn't evaluated by mistake.
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
.. _tpu:
|
||||
|
||||
TPU support
|
||||
===========
|
||||
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
.. role:: hidden
|
||||
:class: hidden-section
|
||||
|
||||
.. _trainer:
|
||||
|
||||
Trainer
|
||||
=======
|
||||
.. automodule:: pytorch_lightning.trainer
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _training-tricks:
|
||||
|
||||
Training Tricks
|
||||
================
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
|
||||
|
||||
Transfer Learning
|
||||
-----------------
|
||||
|
||||
|
@ -115,4 +115,4 @@ Here's a model that uses `Huggingface transformers <https://github.com/huggingfa
|
|||
|
||||
h_cls = h[:, 0]
|
||||
logits = self.W(h_cls)
|
||||
return logits, attn
|
||||
return logits, attn
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
|
||||
.. _weights-loading:
|
||||
|
||||
Saving and loading weights
|
||||
==========================
|
||||
|
|
Loading…
Reference in New Issue