2020-04-24 00:46:18 +00:00
|
|
|
import pytest
|
|
|
|
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from pytorch_lightning.callbacks import ProgressBarBase, ProgressBar, ModelCheckpoint
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2020-05-04 20:52:22 +00:00
|
|
|
from tests.base import EvalModelTemplate
|
2020-04-24 00:46:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('callbacks,refresh_rate', [
|
|
|
|
([], 1),
|
|
|
|
([], 2),
|
|
|
|
([ProgressBar(refresh_rate=1)], 0),
|
|
|
|
([ProgressBar(refresh_rate=2)], 0),
|
|
|
|
([ProgressBar(refresh_rate=2)], 1),
|
|
|
|
])
|
2020-06-29 01:36:46 +00:00
|
|
|
def test_progress_bar_on(tmpdir, callbacks, refresh_rate):
|
2020-04-24 00:46:18 +00:00
|
|
|
"""Test different ways the progress bar can be turned on."""
|
|
|
|
|
|
|
|
trainer = Trainer(
|
2020-06-29 01:36:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-24 00:46:18 +00:00
|
|
|
callbacks=callbacks,
|
|
|
|
progress_bar_refresh_rate=refresh_rate,
|
|
|
|
max_epochs=1,
|
2020-06-19 03:30:16 +00:00
|
|
|
overfit_batches=5,
|
2020-04-24 00:46:18 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
|
|
|
|
# Trainer supports only a single progress bar callback at the moment
|
|
|
|
assert len(progress_bars) == 1
|
|
|
|
assert progress_bars[0] is trainer.progress_bar_callback
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('callbacks,refresh_rate', [
|
|
|
|
([], 0),
|
|
|
|
([], False),
|
|
|
|
([ModelCheckpoint('../trainer')], 0),
|
|
|
|
])
|
2020-06-29 01:36:46 +00:00
|
|
|
def test_progress_bar_off(tmpdir, callbacks, refresh_rate):
|
2020-04-24 00:46:18 +00:00
|
|
|
"""Test different ways the progress bar can be turned off."""
|
|
|
|
|
|
|
|
trainer = Trainer(
|
2020-06-29 01:36:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-24 00:46:18 +00:00
|
|
|
callbacks=callbacks,
|
|
|
|
progress_bar_refresh_rate=refresh_rate,
|
|
|
|
)
|
|
|
|
|
|
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBar)]
|
|
|
|
assert 0 == len(progress_bars)
|
|
|
|
assert not trainer.progress_bar_callback
|
|
|
|
|
|
|
|
|
|
|
|
def test_progress_bar_misconfiguration():
|
|
|
|
"""Test that Trainer doesn't accept multiple progress bars."""
|
|
|
|
callbacks = [ProgressBar(), ProgressBar(), ModelCheckpoint('../trainer')]
|
|
|
|
with pytest.raises(MisconfigurationException, match=r'^You added multiple progress bar callbacks'):
|
|
|
|
Trainer(callbacks=callbacks)
|
|
|
|
|
|
|
|
|
2020-06-29 01:36:46 +00:00
|
|
|
def test_progress_bar_totals(tmpdir):
|
2020-04-24 00:46:18 +00:00
|
|
|
"""Test that the progress finishes with the correct total steps processed."""
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
model = EvalModelTemplate()
|
2020-04-24 00:46:18 +00:00
|
|
|
|
|
|
|
trainer = Trainer(
|
2020-06-29 01:36:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-24 00:46:18 +00:00
|
|
|
progress_bar_refresh_rate=1,
|
2020-06-17 12:03:28 +00:00
|
|
|
limit_val_batches=1.0,
|
2020-04-24 00:46:18 +00:00
|
|
|
max_epochs=1,
|
|
|
|
)
|
|
|
|
bar = trainer.progress_bar_callback
|
|
|
|
assert 0 == bar.total_train_batches
|
|
|
|
assert 0 == bar.total_val_batches
|
|
|
|
assert 0 == bar.total_test_batches
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
# check main progress bar total
|
|
|
|
n = bar.total_train_batches
|
|
|
|
m = bar.total_val_batches
|
|
|
|
assert len(trainer.train_dataloader) == n
|
|
|
|
assert bar.main_progress_bar.total == n + m
|
|
|
|
|
|
|
|
# check val progress bar total
|
|
|
|
assert sum(len(loader) for loader in trainer.val_dataloaders) == m
|
|
|
|
assert bar.val_progress_bar.total == m
|
|
|
|
|
|
|
|
# main progress bar should have reached the end (train batches + val batches)
|
|
|
|
assert bar.main_progress_bar.n == n + m
|
|
|
|
assert bar.train_batch_idx == n
|
|
|
|
|
|
|
|
# val progress bar should have reached the end
|
|
|
|
assert bar.val_progress_bar.n == m
|
|
|
|
assert bar.val_batch_idx == m
|
|
|
|
|
|
|
|
# check that the test progress bar is off
|
|
|
|
assert 0 == bar.total_test_batches
|
|
|
|
assert bar.test_progress_bar is None
|
|
|
|
|
|
|
|
trainer.test(model)
|
|
|
|
|
|
|
|
# check test progress bar total
|
|
|
|
k = bar.total_test_batches
|
|
|
|
assert sum(len(loader) for loader in trainer.test_dataloaders) == k
|
|
|
|
assert bar.test_progress_bar.total == k
|
|
|
|
|
|
|
|
# test progress bar should have reached the end
|
|
|
|
assert bar.test_progress_bar.n == k
|
|
|
|
assert bar.test_batch_idx == k
|
|
|
|
|
|
|
|
|
2020-06-29 01:36:46 +00:00
|
|
|
def test_progress_bar_fast_dev_run(tmpdir):
|
2020-05-10 17:15:28 +00:00
|
|
|
model = EvalModelTemplate()
|
2020-04-24 00:46:18 +00:00
|
|
|
|
|
|
|
trainer = Trainer(
|
2020-06-29 01:36:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-24 00:46:18 +00:00
|
|
|
fast_dev_run=True,
|
|
|
|
)
|
|
|
|
|
2020-07-27 21:56:55 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
2020-04-24 00:46:18 +00:00
|
|
|
progress_bar = trainer.progress_bar_callback
|
|
|
|
assert 1 == progress_bar.total_train_batches
|
|
|
|
# total val batches are known only after val dataloaders have reloaded
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert 1 == progress_bar.total_val_batches
|
|
|
|
assert 1 == progress_bar.train_batch_idx
|
|
|
|
assert 1 == progress_bar.val_batch_idx
|
|
|
|
assert 0 == progress_bar.test_batch_idx
|
|
|
|
|
|
|
|
# the main progress bar should display 2 batches (1 train, 1 val)
|
|
|
|
assert 2 == progress_bar.main_progress_bar.total
|
|
|
|
assert 2 == progress_bar.main_progress_bar.n
|
|
|
|
|
|
|
|
trainer.test(model)
|
|
|
|
|
|
|
|
# the test progress bar should display 1 batch
|
|
|
|
assert 1 == progress_bar.test_batch_idx
|
|
|
|
assert 1 == progress_bar.test_progress_bar.total
|
|
|
|
assert 1 == progress_bar.test_progress_bar.n
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('refresh_rate', [0, 1, 50])
|
2020-06-29 01:36:46 +00:00
|
|
|
def test_progress_bar_progress_refresh(tmpdir, refresh_rate):
|
2020-04-24 00:46:18 +00:00
|
|
|
"""Test that the three progress bars get correctly updated when using different refresh rates."""
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
model = EvalModelTemplate()
|
2020-04-24 00:46:18 +00:00
|
|
|
|
|
|
|
class CurrentProgressBar(ProgressBar):
|
|
|
|
|
|
|
|
train_batches_seen = 0
|
|
|
|
val_batches_seen = 0
|
|
|
|
test_batches_seen = 0
|
|
|
|
|
2020-08-07 13:29:57 +00:00
|
|
|
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
|
|
|
|
super().on_train_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)
|
2020-04-24 00:46:18 +00:00
|
|
|
assert self.train_batch_idx == trainer.batch_idx
|
|
|
|
|
2020-08-07 13:29:57 +00:00
|
|
|
def on_train_batch_end(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
|
|
|
|
super().on_train_batch_end(trainer, pl_module, batch, batch_idx, dataloader_idx)
|
2020-04-24 00:46:18 +00:00
|
|
|
assert self.train_batch_idx == trainer.batch_idx + 1
|
|
|
|
if not self.is_disabled and self.train_batch_idx % self.refresh_rate == 0:
|
|
|
|
assert self.main_progress_bar.n == self.train_batch_idx
|
|
|
|
self.train_batches_seen += 1
|
|
|
|
|
2020-10-08 00:41:56 +00:00
|
|
|
def on_validation_batch_end(self, outputs, trainer, pl_module, batch, batch_idx, dataloader_idx):
|
|
|
|
super().on_validation_batch_end(outputs, trainer, pl_module, batch, batch_idx, dataloader_idx)
|
2020-04-24 00:46:18 +00:00
|
|
|
if not self.is_disabled and self.val_batch_idx % self.refresh_rate == 0:
|
|
|
|
assert self.val_progress_bar.n == self.val_batch_idx
|
|
|
|
self.val_batches_seen += 1
|
|
|
|
|
2020-10-08 00:41:56 +00:00
|
|
|
def on_test_batch_end(self, outputs, trainer, pl_module, batch, batch_idx, dataloader_idx):
|
|
|
|
super().on_test_batch_end(outputs, trainer, pl_module, batch, batch_idx, dataloader_idx)
|
2020-04-24 00:46:18 +00:00
|
|
|
if not self.is_disabled and self.test_batch_idx % self.refresh_rate == 0:
|
|
|
|
assert self.test_progress_bar.n == self.test_batch_idx
|
|
|
|
self.test_batches_seen += 1
|
|
|
|
|
|
|
|
progress_bar = CurrentProgressBar(refresh_rate=refresh_rate)
|
|
|
|
trainer = Trainer(
|
2020-06-29 01:36:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-24 00:46:18 +00:00
|
|
|
callbacks=[progress_bar],
|
|
|
|
progress_bar_refresh_rate=101, # should not matter if custom callback provided
|
2020-06-17 17:42:28 +00:00
|
|
|
limit_train_batches=1.0,
|
2020-04-24 00:46:18 +00:00
|
|
|
num_sanity_val_steps=2,
|
|
|
|
max_epochs=3,
|
|
|
|
)
|
2020-05-25 11:49:23 +00:00
|
|
|
assert trainer.progress_bar_callback.refresh_rate == refresh_rate
|
2020-04-24 00:46:18 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
assert progress_bar.train_batches_seen == 3 * progress_bar.total_train_batches
|
|
|
|
assert progress_bar.val_batches_seen == 3 * progress_bar.total_val_batches + trainer.num_sanity_val_steps
|
|
|
|
|
|
|
|
trainer.test(model)
|
|
|
|
assert progress_bar.test_batches_seen == progress_bar.total_test_batches
|
2020-10-04 12:32:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(['limit_val_batches', 'expected'], [
|
|
|
|
pytest.param(0, 0),
|
|
|
|
pytest.param(5, 7),
|
|
|
|
])
|
|
|
|
def test_num_sanity_val_steps_progress_bar(tmpdir, limit_val_batches, expected):
|
|
|
|
"""
|
|
|
|
Test val_progress_bar total with 'num_sanity_val_steps' Trainer argument.
|
|
|
|
"""
|
|
|
|
class CurrentProgressBar(ProgressBar):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.val_progress_bar_total = 0
|
|
|
|
|
|
|
|
def on_validation_epoch_end(self, trainer, pl_module):
|
|
|
|
self.val_progress_bar_total += trainer.progress_bar_callback.val_progress_bar.total
|
|
|
|
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
progress_bar = CurrentProgressBar()
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
num_sanity_val_steps=2,
|
|
|
|
limit_train_batches=0,
|
|
|
|
limit_val_batches=limit_val_batches,
|
|
|
|
callbacks=[progress_bar],
|
|
|
|
logger=False,
|
|
|
|
checkpoint_callback=False,
|
|
|
|
early_stop_callback=False,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
assert trainer.progress_bar_callback.val_progress_bar_total == expected
|