import pytest from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ProgressBarBase, ProgressBar, ModelCheckpoint from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate @pytest.mark.parametrize('callbacks,refresh_rate', [ ([], 1), ([], 2), ([ProgressBar(refresh_rate=1)], 0), ([ProgressBar(refresh_rate=2)], 0), ([ProgressBar(refresh_rate=2)], 1), ]) def test_progress_bar_on(tmpdir, callbacks, refresh_rate): """Test different ways the progress bar can be turned on.""" trainer = Trainer( default_root_dir=tmpdir, callbacks=callbacks, progress_bar_refresh_rate=refresh_rate, max_epochs=1, overfit_batches=5, ) progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)] # Trainer supports only a single progress bar callback at the moment assert len(progress_bars) == 1 assert progress_bars[0] is trainer.progress_bar_callback @pytest.mark.parametrize('callbacks,refresh_rate', [ ([], 0), ([], False), ([ModelCheckpoint('../trainer')], 0), ]) def test_progress_bar_off(tmpdir, callbacks, refresh_rate): """Test different ways the progress bar can be turned off.""" trainer = Trainer( default_root_dir=tmpdir, callbacks=callbacks, progress_bar_refresh_rate=refresh_rate, ) progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBar)] assert 0 == len(progress_bars) assert not trainer.progress_bar_callback def test_progress_bar_misconfiguration(): """Test that Trainer doesn't accept multiple progress bars.""" callbacks = [ProgressBar(), ProgressBar(), ModelCheckpoint('../trainer')] with pytest.raises(MisconfigurationException, match=r'^You added multiple progress bar callbacks'): Trainer(callbacks=callbacks) def test_progress_bar_totals(tmpdir): """Test that the progress finishes with the correct total steps processed.""" model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, progress_bar_refresh_rate=1, limit_val_batches=1.0, max_epochs=1, ) bar = trainer.progress_bar_callback assert 0 == bar.total_train_batches assert 0 == bar.total_val_batches assert 0 == bar.total_test_batches trainer.fit(model) # check main progress bar total n = bar.total_train_batches m = bar.total_val_batches assert len(trainer.train_dataloader) == n assert bar.main_progress_bar.total == n + m # check val progress bar total assert sum(len(loader) for loader in trainer.val_dataloaders) == m assert bar.val_progress_bar.total == m # main progress bar should have reached the end (train batches + val batches) assert bar.main_progress_bar.n == n + m assert bar.train_batch_idx == n # val progress bar should have reached the end assert bar.val_progress_bar.n == m assert bar.val_batch_idx == m # check that the test progress bar is off assert 0 == bar.total_test_batches assert bar.test_progress_bar is None trainer.test(model) # check test progress bar total k = bar.total_test_batches assert sum(len(loader) for loader in trainer.test_dataloaders) == k assert bar.test_progress_bar.total == k # test progress bar should have reached the end assert bar.test_progress_bar.n == k assert bar.test_batch_idx == k def test_progress_bar_fast_dev_run(tmpdir): model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, ) trainer.fit(model) progress_bar = trainer.progress_bar_callback assert 1 == progress_bar.total_train_batches # total val batches are known only after val dataloaders have reloaded trainer.fit(model) assert 1 == progress_bar.total_val_batches assert 1 == progress_bar.train_batch_idx assert 1 == progress_bar.val_batch_idx assert 0 == progress_bar.test_batch_idx # the main progress bar should display 2 batches (1 train, 1 val) assert 2 == progress_bar.main_progress_bar.total assert 2 == progress_bar.main_progress_bar.n trainer.test(model) # the test progress bar should display 1 batch assert 1 == progress_bar.test_batch_idx assert 1 == progress_bar.test_progress_bar.total assert 1 == progress_bar.test_progress_bar.n @pytest.mark.parametrize('refresh_rate', [0, 1, 50]) def test_progress_bar_progress_refresh(tmpdir, refresh_rate): """Test that the three progress bars get correctly updated when using different refresh rates.""" model = EvalModelTemplate() class CurrentProgressBar(ProgressBar): train_batches_seen = 0 val_batches_seen = 0 test_batches_seen = 0 def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx): super().on_train_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx) assert self.train_batch_idx == trainer.batch_idx def on_train_batch_end(self, trainer, pl_module, batch, batch_idx, dataloader_idx): super().on_train_batch_end(trainer, pl_module, batch, batch_idx, dataloader_idx) assert self.train_batch_idx == trainer.batch_idx + 1 if not self.is_disabled and self.train_batch_idx % self.refresh_rate == 0: assert self.main_progress_bar.n == self.train_batch_idx self.train_batches_seen += 1 def on_validation_batch_end(self, outputs, trainer, pl_module, batch, batch_idx, dataloader_idx): super().on_validation_batch_end(outputs, trainer, pl_module, batch, batch_idx, dataloader_idx) if not self.is_disabled and self.val_batch_idx % self.refresh_rate == 0: assert self.val_progress_bar.n == self.val_batch_idx self.val_batches_seen += 1 def on_test_batch_end(self, outputs, trainer, pl_module, batch, batch_idx, dataloader_idx): super().on_test_batch_end(outputs, trainer, pl_module, batch, batch_idx, dataloader_idx) if not self.is_disabled and self.test_batch_idx % self.refresh_rate == 0: assert self.test_progress_bar.n == self.test_batch_idx self.test_batches_seen += 1 progress_bar = CurrentProgressBar(refresh_rate=refresh_rate) trainer = Trainer( default_root_dir=tmpdir, callbacks=[progress_bar], progress_bar_refresh_rate=101, # should not matter if custom callback provided limit_train_batches=1.0, num_sanity_val_steps=2, max_epochs=3, ) assert trainer.progress_bar_callback.refresh_rate == refresh_rate trainer.fit(model) assert progress_bar.train_batches_seen == 3 * progress_bar.total_train_batches assert progress_bar.val_batches_seen == 3 * progress_bar.total_val_batches + trainer.num_sanity_val_steps trainer.test(model) assert progress_bar.test_batches_seen == progress_bar.total_test_batches @pytest.mark.parametrize(['limit_val_batches', 'expected'], [ pytest.param(0, 0), pytest.param(5, 7), ]) def test_num_sanity_val_steps_progress_bar(tmpdir, limit_val_batches, expected): """ Test val_progress_bar total with 'num_sanity_val_steps' Trainer argument. """ class CurrentProgressBar(ProgressBar): def __init__(self): super().__init__() self.val_progress_bar_total = 0 def on_validation_epoch_end(self, trainer, pl_module): self.val_progress_bar_total += trainer.progress_bar_callback.val_progress_bar.total model = EvalModelTemplate() progress_bar = CurrentProgressBar() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, num_sanity_val_steps=2, limit_train_batches=0, limit_val_batches=limit_val_batches, callbacks=[progress_bar], logger=False, checkpoint_callback=False, early_stop_callback=False, ) trainer.fit(model) assert trainer.progress_bar_callback.val_progress_bar_total == expected