2020-04-29 16:36:28 +00:00
|
|
|
import pytest
|
2020-03-25 11:46:27 +00:00
|
|
|
import tests.base.utils as tutils
|
2020-03-12 16:41:37 +00:00
|
|
|
from pytorch_lightning import Callback
|
2020-03-03 04:51:32 +00:00
|
|
|
from pytorch_lightning import Trainer, LightningModule
|
2020-04-30 12:06:41 +00:00
|
|
|
from pytorch_lightning.callbacks import EarlyStopping, LearningRateLogger, ModelCheckpoint
|
2020-05-04 20:52:22 +00:00
|
|
|
from tests.base import EvalModelTemplate
|
2020-03-03 04:51:32 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_trainer_callback_system(tmpdir):
|
|
|
|
"""Test the callback system."""
|
|
|
|
|
2020-03-25 11:46:27 +00:00
|
|
|
hparams = tutils.get_default_hparams()
|
2020-05-04 20:52:22 +00:00
|
|
|
model = EvalModelTemplate(hparams)
|
2020-03-03 04:51:32 +00:00
|
|
|
|
|
|
|
def _check_args(trainer, pl_module):
|
|
|
|
assert isinstance(trainer, Trainer)
|
|
|
|
assert isinstance(pl_module, LightningModule)
|
|
|
|
|
|
|
|
class TestCallback(Callback):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.on_init_start_called = False
|
|
|
|
self.on_init_end_called = False
|
2020-04-24 00:46:18 +00:00
|
|
|
self.on_sanity_check_start_called = False
|
|
|
|
self.on_sanity_check_end_called = False
|
2020-03-03 04:51:32 +00:00
|
|
|
self.on_epoch_start_called = False
|
|
|
|
self.on_epoch_end_called = False
|
|
|
|
self.on_batch_start_called = False
|
|
|
|
self.on_batch_end_called = False
|
2020-04-24 00:46:18 +00:00
|
|
|
self.on_validation_batch_start_called = False
|
|
|
|
self.on_validation_batch_end_called = False
|
|
|
|
self.on_test_batch_start_called = False
|
|
|
|
self.on_test_batch_end_called = False
|
2020-03-03 04:51:32 +00:00
|
|
|
self.on_train_start_called = False
|
|
|
|
self.on_train_end_called = False
|
|
|
|
self.on_validation_start_called = False
|
|
|
|
self.on_validation_end_called = False
|
|
|
|
self.on_test_start_called = False
|
|
|
|
self.on_test_end_called = False
|
|
|
|
|
|
|
|
def on_init_start(self, trainer):
|
|
|
|
assert isinstance(trainer, Trainer)
|
|
|
|
self.on_init_start_called = True
|
|
|
|
|
|
|
|
def on_init_end(self, trainer):
|
|
|
|
assert isinstance(trainer, Trainer)
|
|
|
|
self.on_init_end_called = True
|
|
|
|
|
2020-04-24 00:46:18 +00:00
|
|
|
def on_sanity_check_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_sanity_check_start_called = True
|
|
|
|
|
|
|
|
def on_sanity_check_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_sanity_check_end_called = True
|
|
|
|
|
2020-03-03 04:51:32 +00:00
|
|
|
def on_epoch_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_epoch_start_called = True
|
|
|
|
|
|
|
|
def on_epoch_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_epoch_end_called = True
|
|
|
|
|
|
|
|
def on_batch_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_batch_start_called = True
|
|
|
|
|
|
|
|
def on_batch_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_batch_end_called = True
|
|
|
|
|
2020-04-24 00:46:18 +00:00
|
|
|
def on_validation_batch_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_validation_batch_start_called = True
|
|
|
|
|
|
|
|
def on_validation_batch_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_validation_batch_end_called = True
|
|
|
|
|
|
|
|
def on_test_batch_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_test_batch_start_called = True
|
|
|
|
|
|
|
|
def on_test_batch_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_test_batch_end_called = True
|
|
|
|
|
2020-03-03 04:51:32 +00:00
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_train_start_called = True
|
|
|
|
|
|
|
|
def on_train_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_train_end_called = True
|
|
|
|
|
|
|
|
def on_validation_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_validation_start_called = True
|
|
|
|
|
|
|
|
def on_validation_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_validation_end_called = True
|
|
|
|
|
|
|
|
def on_test_start(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_test_start_called = True
|
|
|
|
|
|
|
|
def on_test_end(self, trainer, pl_module):
|
|
|
|
_check_args(trainer, pl_module)
|
|
|
|
self.on_test_end_called = True
|
|
|
|
|
|
|
|
test_callback = TestCallback()
|
|
|
|
|
2020-05-01 14:43:58 +00:00
|
|
|
trainer_options = dict(
|
|
|
|
callbacks=[test_callback],
|
|
|
|
max_epochs=1,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.2,
|
|
|
|
progress_bar_refresh_rate=0,
|
|
|
|
)
|
2020-03-03 04:51:32 +00:00
|
|
|
|
|
|
|
assert not test_callback.on_init_start_called
|
|
|
|
assert not test_callback.on_init_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert not test_callback.on_sanity_check_start_called
|
|
|
|
assert not test_callback.on_sanity_check_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert not test_callback.on_epoch_start_called
|
|
|
|
assert not test_callback.on_epoch_start_called
|
|
|
|
assert not test_callback.on_batch_start_called
|
|
|
|
assert not test_callback.on_batch_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert not test_callback.on_validation_batch_start_called
|
|
|
|
assert not test_callback.on_validation_batch_end_called
|
|
|
|
assert not test_callback.on_test_batch_start_called
|
|
|
|
assert not test_callback.on_test_batch_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert not test_callback.on_train_start_called
|
|
|
|
assert not test_callback.on_train_end_called
|
|
|
|
assert not test_callback.on_validation_start_called
|
|
|
|
assert not test_callback.on_validation_end_called
|
|
|
|
assert not test_callback.on_test_start_called
|
|
|
|
assert not test_callback.on_test_end_called
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
|
|
|
|
assert trainer.callbacks[0] == test_callback
|
|
|
|
assert test_callback.on_init_start_called
|
|
|
|
assert test_callback.on_init_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert not test_callback.on_sanity_check_start_called
|
|
|
|
assert not test_callback.on_sanity_check_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert not test_callback.on_epoch_start_called
|
|
|
|
assert not test_callback.on_epoch_start_called
|
|
|
|
assert not test_callback.on_batch_start_called
|
|
|
|
assert not test_callback.on_batch_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert not test_callback.on_validation_batch_start_called
|
|
|
|
assert not test_callback.on_validation_batch_end_called
|
|
|
|
assert not test_callback.on_test_batch_start_called
|
|
|
|
assert not test_callback.on_test_batch_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert not test_callback.on_train_start_called
|
|
|
|
assert not test_callback.on_train_end_called
|
|
|
|
assert not test_callback.on_validation_start_called
|
|
|
|
assert not test_callback.on_validation_end_called
|
|
|
|
assert not test_callback.on_test_start_called
|
|
|
|
assert not test_callback.on_test_end_called
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
assert test_callback.on_init_start_called
|
|
|
|
assert test_callback.on_init_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert test_callback.on_sanity_check_start_called
|
|
|
|
assert test_callback.on_sanity_check_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert test_callback.on_epoch_start_called
|
|
|
|
assert test_callback.on_epoch_start_called
|
|
|
|
assert test_callback.on_batch_start_called
|
|
|
|
assert test_callback.on_batch_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert test_callback.on_validation_batch_start_called
|
|
|
|
assert test_callback.on_validation_batch_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert test_callback.on_train_start_called
|
|
|
|
assert test_callback.on_train_end_called
|
|
|
|
assert test_callback.on_validation_start_called
|
|
|
|
assert test_callback.on_validation_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert not test_callback.on_test_batch_start_called
|
|
|
|
assert not test_callback.on_test_batch_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert not test_callback.on_test_start_called
|
|
|
|
assert not test_callback.on_test_end_called
|
|
|
|
|
2020-04-24 00:46:18 +00:00
|
|
|
test_callback = TestCallback()
|
2020-05-01 14:43:58 +00:00
|
|
|
trainer_options.update(callbacks=[test_callback])
|
2020-04-24 00:46:18 +00:00
|
|
|
trainer = Trainer(**trainer_options)
|
|
|
|
trainer.test(model)
|
2020-03-03 04:51:32 +00:00
|
|
|
|
2020-04-24 00:46:18 +00:00
|
|
|
assert test_callback.on_test_batch_start_called
|
|
|
|
assert test_callback.on_test_batch_end_called
|
2020-03-03 04:51:32 +00:00
|
|
|
assert test_callback.on_test_start_called
|
|
|
|
assert test_callback.on_test_end_called
|
2020-04-24 00:46:18 +00:00
|
|
|
assert not test_callback.on_validation_start_called
|
|
|
|
assert not test_callback.on_validation_end_called
|
|
|
|
assert not test_callback.on_validation_batch_end_called
|
|
|
|
assert not test_callback.on_validation_batch_start_called
|
2020-03-31 06:24:26 +00:00
|
|
|
|
|
|
|
|
2020-04-22 00:33:10 +00:00
|
|
|
def test_early_stopping_no_val_step(tmpdir):
|
2020-03-31 06:24:26 +00:00
|
|
|
"""Test that early stopping callback falls back to training metrics when no validation defined."""
|
|
|
|
|
2020-05-04 20:52:22 +00:00
|
|
|
class CurrentModel(EvalModelTemplate):
|
2020-03-31 06:24:26 +00:00
|
|
|
def training_step(self, *args, **kwargs):
|
|
|
|
output = super().training_step(*args, **kwargs)
|
2020-05-04 20:52:22 +00:00
|
|
|
output.update({'my_train_metric': output['loss']}) # could be anything else
|
2020-03-31 06:24:26 +00:00
|
|
|
return output
|
|
|
|
|
2020-05-04 20:52:22 +00:00
|
|
|
model = CurrentModel(tutils.get_default_hparams())
|
|
|
|
model.validation_step = None
|
|
|
|
model.val_dataloader = None
|
2020-03-31 06:24:26 +00:00
|
|
|
|
|
|
|
stopping = EarlyStopping(monitor='my_train_metric', min_delta=0.1)
|
2020-05-01 14:43:58 +00:00
|
|
|
trainer = Trainer(
|
2020-04-10 16:02:59 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-03-31 06:24:26 +00:00
|
|
|
early_stop_callback=stopping,
|
|
|
|
overfit_pct=0.20,
|
2020-04-02 16:28:44 +00:00
|
|
|
max_epochs=5,
|
2020-03-31 06:24:26 +00:00
|
|
|
)
|
|
|
|
result = trainer.fit(model)
|
|
|
|
|
|
|
|
assert result == 1, 'training failed to complete'
|
2020-04-02 16:28:44 +00:00
|
|
|
assert trainer.current_epoch < trainer.max_epochs
|
2020-04-23 15:50:58 +00:00
|
|
|
|
|
|
|
|
2020-04-27 11:41:30 +00:00
|
|
|
def test_pickling(tmpdir):
|
|
|
|
import pickle
|
|
|
|
early_stopping = EarlyStopping()
|
|
|
|
ckpt = ModelCheckpoint(tmpdir)
|
|
|
|
|
|
|
|
pickle.dumps(ckpt)
|
|
|
|
pickle.dumps(early_stopping)
|
|
|
|
|
|
|
|
|
2020-04-29 16:36:28 +00:00
|
|
|
@pytest.mark.parametrize('save_top_k', [-1, 0, 1, 2])
|
|
|
|
def test_model_checkpoint_with_non_string_input(tmpdir, save_top_k):
|
2020-05-04 15:38:08 +00:00
|
|
|
""" Test that None in checkpoint callback is valid and that chkp_path is set correctly """
|
2020-04-23 15:50:58 +00:00
|
|
|
tutils.reset_seed()
|
2020-05-04 20:52:22 +00:00
|
|
|
model = EvalModelTemplate(tutils.get_default_hparams())
|
2020-04-23 15:50:58 +00:00
|
|
|
|
2020-04-29 16:36:28 +00:00
|
|
|
checkpoint = ModelCheckpoint(filepath=None, save_top_k=save_top_k)
|
2020-04-23 15:50:58 +00:00
|
|
|
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir,
|
|
|
|
checkpoint_callback=checkpoint,
|
|
|
|
overfit_pct=0.20,
|
|
|
|
max_epochs=5
|
|
|
|
)
|
2020-05-02 12:38:22 +00:00
|
|
|
trainer.fit(model)
|
2020-04-23 15:50:58 +00:00
|
|
|
|
|
|
|
# These should be different if the dirpath has be overridden
|
|
|
|
assert trainer.ckpt_path != trainer.default_root_dir
|
2020-04-30 12:06:41 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_lr_logger_single_lr(tmpdir):
|
|
|
|
""" Test that learning rates are extracted and logged for single lr scheduler"""
|
|
|
|
tutils.reset_seed()
|
|
|
|
|
2020-05-04 20:52:22 +00:00
|
|
|
model = EvalModelTemplate(tutils.get_default_hparams())
|
|
|
|
model.configure_optimizers = model.configure_optimizers__single_scheduler
|
2020-04-30 12:06:41 +00:00
|
|
|
|
|
|
|
lr_logger = LearningRateLogger()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=5,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.5,
|
|
|
|
callbacks=[lr_logger]
|
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
|
2020-05-04 20:52:22 +00:00
|
|
|
assert results == 1
|
2020-04-30 12:06:41 +00:00
|
|
|
assert lr_logger.lrs, 'No learning rates logged'
|
|
|
|
assert len(lr_logger.lrs) == len(trainer.lr_schedulers), \
|
|
|
|
'Number of learning rates logged does not match number of lr schedulers'
|
|
|
|
assert all([k in ['lr-Adam'] for k in lr_logger.lrs.keys()]), \
|
|
|
|
'Names of learning rates not set correctly'
|
|
|
|
|
|
|
|
|
|
|
|
def test_lr_logger_multi_lrs(tmpdir):
|
|
|
|
""" Test that learning rates are extracted and logged for multi lr schedulers """
|
|
|
|
tutils.reset_seed()
|
|
|
|
|
2020-05-04 20:52:22 +00:00
|
|
|
model = EvalModelTemplate(tutils.get_default_hparams())
|
|
|
|
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
|
2020-04-30 12:06:41 +00:00
|
|
|
|
|
|
|
lr_logger = LearningRateLogger()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
val_percent_check=0.1,
|
|
|
|
train_percent_check=0.5,
|
|
|
|
callbacks=[lr_logger]
|
|
|
|
)
|
|
|
|
results = trainer.fit(model)
|
|
|
|
|
2020-05-04 20:52:22 +00:00
|
|
|
assert results == 1
|
2020-04-30 12:06:41 +00:00
|
|
|
assert lr_logger.lrs, 'No learning rates logged'
|
|
|
|
assert len(lr_logger.lrs) == len(trainer.lr_schedulers), \
|
|
|
|
'Number of learning rates logged does not match number of lr schedulers'
|
|
|
|
assert all([k in ['lr-Adam', 'lr-Adam-1'] for k in lr_logger.lrs.keys()]), \
|
|
|
|
'Names of learning rates not set correctly'
|