lightning/tests/trainer/test_callbacks.py

184 lines
6.2 KiB
Python
Raw Normal View History

import tests.base.utils as tutils
2020-03-12 16:41:37 +00:00
from pytorch_lightning import Callback
from pytorch_lightning import Trainer, LightningModule
from pytorch_lightning.callbacks import EarlyStopping
from tests.base import (
LightTrainDataloader,
LightTestMixin,
LightValidationMixin,
TestModelBase
)
def test_trainer_callback_system(tmpdir):
"""Test the callback system."""
class CurrentTestModel(
LightTrainDataloader,
LightTestMixin,
LightValidationMixin,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
def _check_args(trainer, pl_module):
assert isinstance(trainer, Trainer)
assert isinstance(pl_module, LightningModule)
class TestCallback(Callback):
def __init__(self):
super().__init__()
self.on_init_start_called = False
self.on_init_end_called = False
self.on_epoch_start_called = False
self.on_epoch_end_called = False
self.on_batch_start_called = False
self.on_batch_end_called = False
self.on_train_start_called = False
self.on_train_end_called = False
self.on_validation_start_called = False
self.on_validation_end_called = False
self.on_test_start_called = False
self.on_test_end_called = False
def on_init_start(self, trainer):
assert isinstance(trainer, Trainer)
self.on_init_start_called = True
def on_init_end(self, trainer):
assert isinstance(trainer, Trainer)
self.on_init_end_called = True
def on_epoch_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_epoch_start_called = True
def on_epoch_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_epoch_end_called = True
def on_batch_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_batch_start_called = True
def on_batch_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_batch_end_called = True
def on_train_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_train_start_called = True
def on_train_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_train_end_called = True
def on_validation_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_validation_start_called = True
def on_validation_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_validation_end_called = True
def on_test_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_test_start_called = True
def on_test_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_test_end_called = True
test_callback = TestCallback()
trainer_options = {
'callbacks': [test_callback],
'max_epochs': 1,
'val_percent_check': 0.1,
'train_percent_check': 0.2,
'progress_bar_refresh_rate': 0
}
assert not test_callback.on_init_start_called
assert not test_callback.on_init_end_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_batch_start_called
assert not test_callback.on_batch_end_called
assert not test_callback.on_train_start_called
assert not test_callback.on_train_end_called
assert not test_callback.on_validation_start_called
assert not test_callback.on_validation_end_called
assert not test_callback.on_test_start_called
assert not test_callback.on_test_end_called
# fit model
trainer = Trainer(**trainer_options)
assert trainer.callbacks[0] == test_callback
assert test_callback.on_init_start_called
assert test_callback.on_init_end_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_batch_start_called
assert not test_callback.on_batch_end_called
assert not test_callback.on_train_start_called
assert not test_callback.on_train_end_called
assert not test_callback.on_validation_start_called
assert not test_callback.on_validation_end_called
assert not test_callback.on_test_start_called
assert not test_callback.on_test_end_called
trainer.fit(model)
assert test_callback.on_init_start_called
assert test_callback.on_init_end_called
assert test_callback.on_epoch_start_called
assert test_callback.on_epoch_start_called
assert test_callback.on_batch_start_called
assert test_callback.on_batch_end_called
assert test_callback.on_train_start_called
assert test_callback.on_train_end_called
assert test_callback.on_validation_start_called
assert test_callback.on_validation_end_called
assert not test_callback.on_test_start_called
assert not test_callback.on_test_end_called
trainer.test()
assert test_callback.on_test_start_called
assert test_callback.on_test_end_called
def test_early_stopping_without_val_step(tmpdir):
"""Test that early stopping callback falls back to training metrics when no validation defined."""
tutils.reset_seed()
class ModelWithoutValStep(LightTrainDataloader, TestModelBase):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
loss = output['loss'] # could be anything else
output.update({'my_train_metric': loss})
return output
hparams = tutils.get_default_hparams()
model = ModelWithoutValStep(hparams)
stopping = EarlyStopping(monitor='my_train_metric', min_delta=0.1)
trainer_options = dict(
default_save_path=tmpdir,
early_stop_callback=stopping,
overfit_pct=0.20,
max_epochs=5,
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
assert trainer.current_epoch < trainer.max_epochs