2021-10-18 15:27:12 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os.path as osp
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from copy import deepcopy
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Any, Dict, List, Optional, Type
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torchvision.transforms as T
|
|
|
|
from sklearn.model_selection import KFold
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch.utils.data import random_split
|
|
|
|
from torch.utils.data.dataloader import DataLoader
|
|
|
|
from torch.utils.data.dataset import Dataset, Subset
|
2022-01-03 09:54:44 +00:00
|
|
|
from torchmetrics.classification.accuracy import Accuracy
|
2021-10-18 15:27:12 +00:00
|
|
|
|
|
|
|
from pl_examples import _DATASETS_PATH
|
|
|
|
from pl_examples.basic_examples.mnist_datamodule import MNIST
|
2021-11-02 08:04:29 +00:00
|
|
|
from pl_examples.basic_examples.mnist_examples.image_classifier_4_lightning_module import ImageClassifier
|
2021-10-18 15:27:12 +00:00
|
|
|
from pytorch_lightning import LightningDataModule, seed_everything, Trainer
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
|
|
from pytorch_lightning.loops.base import Loop
|
|
|
|
from pytorch_lightning.loops.fit_loop import FitLoop
|
|
|
|
from pytorch_lightning.trainer.states import TrainerFn
|
|
|
|
|
|
|
|
#############################################################################################
|
|
|
|
# KFold Loop / Cross Validation Example #
|
|
|
|
# This example demonstrates how to leverage Lightning Loop Customization introduced in v1.5 #
|
|
|
|
# Learn more about the loop structure from the documentation: #
|
|
|
|
# https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html #
|
|
|
|
#############################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
#############################################################################################
|
|
|
|
# Step 1 / 5: Define KFold DataModule API #
|
|
|
|
# Our KFold DataModule requires to implement the `setup_folds` and `setup_fold_index` #
|
|
|
|
# methods. #
|
|
|
|
#############################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
class BaseKFoldDataModule(LightningDataModule, ABC):
|
|
|
|
@abstractmethod
|
|
|
|
def setup_folds(self, num_folds: int) -> None:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def setup_fold_index(self, fold_index: int) -> None:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
#############################################################################################
|
|
|
|
# Step 2 / 5: Implement the KFoldDataModule #
|
|
|
|
# The `KFoldDataModule` will take a train and test dataset. #
|
|
|
|
# On `setup_folds`, folds will be created depending on the provided argument `num_folds` #
|
2022-02-17 01:27:51 +00:00
|
|
|
# Our `setup_fold_index`, the provided train dataset will be split accordingly to #
|
2021-10-18 15:27:12 +00:00
|
|
|
# the current fold split. #
|
|
|
|
#############################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class MNISTKFoldDataModule(BaseKFoldDataModule):
|
|
|
|
|
|
|
|
train_dataset: Optional[Dataset] = None
|
|
|
|
test_dataset: Optional[Dataset] = None
|
|
|
|
train_fold: Optional[Dataset] = None
|
|
|
|
val_fold: Optional[Dataset] = None
|
|
|
|
|
|
|
|
def prepare_data(self) -> None:
|
|
|
|
# download the data.
|
|
|
|
MNIST(_DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))]))
|
|
|
|
|
|
|
|
def setup(self, stage: Optional[str] = None) -> None:
|
|
|
|
# load the data
|
|
|
|
dataset = MNIST(_DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))]))
|
|
|
|
self.train_dataset, self.test_dataset = random_split(dataset, [50000, 10000])
|
|
|
|
|
|
|
|
def setup_folds(self, num_folds: int) -> None:
|
|
|
|
self.num_folds = num_folds
|
|
|
|
self.splits = [split for split in KFold(num_folds).split(range(len(self.train_dataset)))]
|
|
|
|
|
|
|
|
def setup_fold_index(self, fold_index: int) -> None:
|
|
|
|
train_indices, val_indices = self.splits[fold_index]
|
|
|
|
self.train_fold = Subset(self.train_dataset, train_indices)
|
|
|
|
self.val_fold = Subset(self.train_dataset, val_indices)
|
|
|
|
|
|
|
|
def train_dataloader(self) -> DataLoader:
|
|
|
|
return DataLoader(self.train_fold)
|
|
|
|
|
|
|
|
def val_dataloader(self) -> DataLoader:
|
|
|
|
return DataLoader(self.val_fold)
|
|
|
|
|
|
|
|
def test_dataloader(self) -> DataLoader:
|
|
|
|
return DataLoader(self.test_dataset)
|
|
|
|
|
2022-01-03 09:54:44 +00:00
|
|
|
def __post_init__(cls):
|
|
|
|
super().__init__()
|
|
|
|
|
2021-10-18 15:27:12 +00:00
|
|
|
|
|
|
|
#############################################################################################
|
|
|
|
# Step 3 / 5: Implement the EnsembleVotingModel module #
|
|
|
|
# The `EnsembleVotingModel` will take our custom LightningModule and #
|
|
|
|
# several checkpoint_paths. #
|
|
|
|
# #
|
|
|
|
#############################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
class EnsembleVotingModel(LightningModule):
|
2022-01-03 09:54:44 +00:00
|
|
|
def __init__(self, model_cls: Type[LightningModule], checkpoint_paths: List[str]) -> None:
|
2021-10-18 15:27:12 +00:00
|
|
|
super().__init__()
|
|
|
|
# Create `num_folds` models with their associated fold weights
|
|
|
|
self.models = torch.nn.ModuleList([model_cls.load_from_checkpoint(p) for p in checkpoint_paths])
|
2022-01-03 09:54:44 +00:00
|
|
|
self.test_acc = Accuracy()
|
2021-10-18 15:27:12 +00:00
|
|
|
|
|
|
|
def test_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None:
|
|
|
|
# Compute the averaged predictions over the `num_folds` models.
|
|
|
|
logits = torch.stack([m(batch[0]) for m in self.models]).mean(0)
|
2022-01-03 09:54:44 +00:00
|
|
|
loss = F.nll_loss(logits, batch[1])
|
|
|
|
self.test_acc(logits, batch[1])
|
|
|
|
self.log("test_acc", self.test_acc)
|
2021-10-18 15:27:12 +00:00
|
|
|
self.log("test_loss", loss)
|
|
|
|
|
|
|
|
|
|
|
|
#############################################################################################
|
|
|
|
# Step 4 / 5: Implement the KFoldLoop #
|
|
|
|
# From Lightning v1.5, it is possible to implement your own loop. There is several steps #
|
|
|
|
# to do so which are described in detail within the documentation #
|
|
|
|
# https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html. #
|
|
|
|
# Here, we will implement an outer fit_loop. It means we will implement subclass the #
|
|
|
|
# base Loop and wrap the current trainer `fit_loop`. #
|
|
|
|
#############################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
#############################################################################################
|
|
|
|
# Here is the `Pseudo Code` for the base Loop. #
|
|
|
|
# class Loop: #
|
|
|
|
# #
|
|
|
|
# def run(self, ...): #
|
|
|
|
# self.reset(...) #
|
|
|
|
# self.on_run_start(...) #
|
|
|
|
# #
|
|
|
|
# while not self.done: #
|
|
|
|
# self.on_advance_start(...) #
|
|
|
|
# self.advance(...) #
|
|
|
|
# self.on_advance_end(...) #
|
|
|
|
# #
|
|
|
|
# return self.on_run_end(...) #
|
|
|
|
#############################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
class KFoldLoop(Loop):
|
2022-01-03 09:54:44 +00:00
|
|
|
def __init__(self, num_folds: int, export_path: str) -> None:
|
2021-10-18 15:27:12 +00:00
|
|
|
super().__init__()
|
|
|
|
self.num_folds = num_folds
|
|
|
|
self.current_fold: int = 0
|
|
|
|
self.export_path = export_path
|
|
|
|
|
|
|
|
@property
|
|
|
|
def done(self) -> bool:
|
|
|
|
return self.current_fold >= self.num_folds
|
|
|
|
|
2022-01-03 09:54:44 +00:00
|
|
|
def connect(self, fit_loop: FitLoop) -> None:
|
|
|
|
self.fit_loop = fit_loop
|
|
|
|
|
2021-10-18 15:27:12 +00:00
|
|
|
def reset(self) -> None:
|
|
|
|
"""Nothing to reset in this loop."""
|
|
|
|
|
|
|
|
def on_run_start(self, *args: Any, **kwargs: Any) -> None:
|
|
|
|
"""Used to call `setup_folds` from the `BaseKFoldDataModule` instance and store the original weights of the
|
|
|
|
model."""
|
|
|
|
assert isinstance(self.trainer.datamodule, BaseKFoldDataModule)
|
|
|
|
self.trainer.datamodule.setup_folds(self.num_folds)
|
|
|
|
self.lightning_module_state_dict = deepcopy(self.trainer.lightning_module.state_dict())
|
|
|
|
|
|
|
|
def on_advance_start(self, *args: Any, **kwargs: Any) -> None:
|
|
|
|
"""Used to call `setup_fold_index` from the `BaseKFoldDataModule` instance."""
|
|
|
|
print(f"STARTING FOLD {self.current_fold}")
|
|
|
|
assert isinstance(self.trainer.datamodule, BaseKFoldDataModule)
|
|
|
|
self.trainer.datamodule.setup_fold_index(self.current_fold)
|
|
|
|
|
|
|
|
def advance(self, *args: Any, **kwargs: Any) -> None:
|
|
|
|
"""Used to the run a fitting and testing on the current hold."""
|
|
|
|
self._reset_fitting() # requires to reset the tracking stage.
|
|
|
|
self.fit_loop.run()
|
|
|
|
|
|
|
|
self._reset_testing() # requires to reset the tracking stage.
|
|
|
|
self.trainer.test_loop.run()
|
|
|
|
self.current_fold += 1 # increment fold tracking number.
|
|
|
|
|
|
|
|
def on_advance_end(self) -> None:
|
|
|
|
"""Used to save the weights of the current fold and reset the LightningModule and its optimizers."""
|
|
|
|
self.trainer.save_checkpoint(osp.join(self.export_path, f"model.{self.current_fold}.pt"))
|
|
|
|
# restore the original weights + optimizers and schedulers.
|
|
|
|
self.trainer.lightning_module.load_state_dict(self.lightning_module_state_dict)
|
2022-01-03 09:54:44 +00:00
|
|
|
self.trainer.strategy.setup_optimizers(self.trainer)
|
|
|
|
self.replace(fit_loop=FitLoop)
|
2021-10-18 15:27:12 +00:00
|
|
|
|
|
|
|
def on_run_end(self) -> None:
|
|
|
|
"""Used to compute the performance of the ensemble model on the test set."""
|
|
|
|
checkpoint_paths = [osp.join(self.export_path, f"model.{f_idx + 1}.pt") for f_idx in range(self.num_folds)]
|
|
|
|
voting_model = EnsembleVotingModel(type(self.trainer.lightning_module), checkpoint_paths)
|
|
|
|
voting_model.trainer = self.trainer
|
|
|
|
# This requires to connect the new model and move it the right device.
|
2021-12-22 02:11:43 +00:00
|
|
|
self.trainer.strategy.connect(voting_model)
|
|
|
|
self.trainer.strategy.model_to_device()
|
2021-10-18 15:27:12 +00:00
|
|
|
self.trainer.test_loop.run()
|
|
|
|
|
|
|
|
def on_save_checkpoint(self) -> Dict[str, int]:
|
|
|
|
return {"current_fold": self.current_fold}
|
|
|
|
|
|
|
|
def on_load_checkpoint(self, state_dict: Dict) -> None:
|
|
|
|
self.current_fold = state_dict["current_fold"]
|
|
|
|
|
|
|
|
def _reset_fitting(self) -> None:
|
|
|
|
self.trainer.reset_train_dataloader()
|
|
|
|
self.trainer.reset_val_dataloader()
|
|
|
|
self.trainer.state.fn = TrainerFn.FITTING
|
|
|
|
self.trainer.training = True
|
|
|
|
|
|
|
|
def _reset_testing(self) -> None:
|
|
|
|
self.trainer.reset_test_dataloader()
|
|
|
|
self.trainer.state.fn = TrainerFn.TESTING
|
|
|
|
self.trainer.testing = True
|
|
|
|
|
|
|
|
def __getattr__(self, key) -> Any:
|
|
|
|
# requires to be overridden as attributes of the wrapped loop are being accessed.
|
|
|
|
if key not in self.__dict__:
|
|
|
|
return getattr(self.fit_loop, key)
|
|
|
|
return self.__dict__[key]
|
|
|
|
|
2022-04-29 11:52:42 +00:00
|
|
|
def __setstate__(self, state: Dict[str, Any]) -> None:
|
|
|
|
self.__dict__.update(state)
|
|
|
|
|
2021-10-18 15:27:12 +00:00
|
|
|
|
2022-01-03 09:54:44 +00:00
|
|
|
class LitImageClassifier(ImageClassifier):
|
|
|
|
def __init__(self) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.val_acc = Accuracy()
|
|
|
|
|
|
|
|
def validation_step(self, batch: Any, batch_idx: int) -> None:
|
|
|
|
x, y = batch
|
|
|
|
logits = self.forward(x)
|
|
|
|
loss = F.nll_loss(logits, y.long())
|
|
|
|
self.val_acc(logits, y)
|
|
|
|
self.log("val_acc", self.val_acc)
|
|
|
|
self.log("val_loss", loss)
|
|
|
|
|
|
|
|
|
2021-10-18 15:27:12 +00:00
|
|
|
#############################################################################################
|
|
|
|
# Step 5 / 5: Connect the KFoldLoop to the Trainer #
|
|
|
|
# After creating the `KFoldDataModule` and our model, the `KFoldLoop` is being connected to #
|
|
|
|
# the Trainer. #
|
|
|
|
# Finally, use `trainer.fit` to start the cross validation training. #
|
|
|
|
#############################################################################################
|
|
|
|
|
2021-10-19 15:09:42 +00:00
|
|
|
if __name__ == "__main__":
|
2022-01-03 09:54:44 +00:00
|
|
|
seed_everything(42)
|
|
|
|
model = LitImageClassifier()
|
2021-10-19 15:09:42 +00:00
|
|
|
datamodule = MNISTKFoldDataModule()
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=10,
|
|
|
|
limit_train_batches=2,
|
|
|
|
limit_val_batches=2,
|
|
|
|
limit_test_batches=2,
|
|
|
|
num_sanity_val_steps=0,
|
|
|
|
devices=2,
|
|
|
|
accelerator="auto",
|
|
|
|
strategy="ddp",
|
|
|
|
)
|
2022-01-03 09:54:44 +00:00
|
|
|
internal_fit_loop = trainer.fit_loop
|
|
|
|
trainer.fit_loop = KFoldLoop(5, export_path="./")
|
|
|
|
trainer.fit_loop.connect(internal_fit_loop)
|
2021-10-19 15:09:42 +00:00
|
|
|
trainer.fit(model, datamodule)
|