Add KFold Loop example (#9965)

This commit is contained in:
thomas chaton 2021-10-18 16:27:12 +01:00 committed by GitHub
parent a99b7440b5
commit 86df7dcee7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 288 additions and 13 deletions

View File

@ -186,14 +186,19 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Added support for `torch.autograd.set_detect_anomaly` through `Trainer` constructor argument `detect_anomaly` ([#9848](https://github.com/PyTorchLightning/pytorch-lightning/pull/9848))
- Added a `len` method to `LightningDataModule` ([#9895](https://github.com/PyTorchLightning/pytorch-lightning/pull/9895))
- Added `enable_model_summary` flag to Trainer ([#9699](https://github.com/PyTorchLightning/pytorch-lightning/pull/9699))
- Added `strategy` argument to Trainer ([#8597](https://github.com/PyTorchLightning/pytorch-lightning/pull/8597))
- Added `kfold` example for loop customization ([#9965](https://github.com/PyTorchLightning/pytorch-lightning/pull/9965))
- LightningLite:
* Added `PrecisionPlugin.forward_context`, making it the default implementation for all `{train,val,test,predict}_step_context()` methods ([#9988](https://github.com/PyTorchLightning/pytorch-lightning/pull/9988))

View File

@ -395,7 +395,17 @@ To run the following demo, install Flash and `BaaL <https://github.com/ElementAI
# 5. Save the model!
trainer.save_checkpoint("image_classification_model.pt")
Here is the `runnable example <https://github.com/PyTorchLightning/lightning-flash/blob/master/flash_examples/integrations/baal/image_classification_active_learning.py>`_ and the `code for the active learning loop <https://github.com/PyTorchLightning/lightning-flash/blob/master/flash/image/classification/integrations/baal/loop.py#L31>`_.
Here is the `Active Learning Loop example <https://github.com/PyTorchLightning/lightning-flash/blob/master/flash_examples/integrations/baal/image_classification_active_learning.py>`_ and the `code for the active learning loop <https://github.com/PyTorchLightning/lightning-flash/blob/master/flash/image/classification/integrations/baal/loop.py#L31>`_.
`KFold / Cross Validation <https://en.wikipedia.org/wiki/Cross-validation_(statistics)>`__ is a machine learning practice in which the training dataset is being partitioned into `num_folds` complementary subsets.
One cross validation round will perform fitting where one fold is left out for validation and the other folds are used for training.
To reduce variability, once all rounds are performed using the different folds, the trained models are ensembled and their predictions are
averaged when estimating the model's predictive performance on the test dataset.
KFold can elegantly be implemented with `Lightning Loop Customization` as follows:
Here is the `KFold Loop example <https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/loops/kfold.py>`_.
Advanced Topics and Examples
----------------------------

View File

@ -26,18 +26,21 @@ from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
if _TORCHVISION_AVAILABLE:
from torchvision import transforms as transform_lib
_TORCHVISION_MNIST_AVAILABLE = not bool(os.getenv("PL_USE_MOCKED_MNIST", False))
if _TORCHVISION_MNIST_AVAILABLE:
try:
from torchvision.datasets import MNIST
MNIST(_DATASETS_PATH, download=True)
except HTTPError as e:
print(f"Error {e} downloading `torchvision.datasets.MNIST`")
_TORCHVISION_MNIST_AVAILABLE = False
if not _TORCHVISION_MNIST_AVAILABLE:
print("`torchvision.datasets.MNIST` not available. Using our hosted version")
from tests.helpers.datasets import MNIST
def MNIST(*args, **kwargs):
torchvision_mnist_available = not bool(os.getenv("PL_USE_MOCKED_MNIST", False))
if torchvision_mnist_available:
try:
from torchvision.datasets import MNIST
MNIST(_DATASETS_PATH, download=True)
except HTTPError as e:
print(f"Error {e} downloading `torchvision.datasets.MNIST`")
torchvision_mnist_available = False
if not torchvision_mnist_available:
print("`torchvision.datasets.MNIST` not available. Using our hosted version")
from tests.helpers.datasets import MNIST
return MNIST(*args, **kwargs)
class MNISTDataModule(LightningDataModule):

View File

View File

@ -0,0 +1,256 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
from abc import ABC, abstractmethod
from copy import deepcopy
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Type
import torch
import torchvision.transforms as T
from sklearn.model_selection import KFold
from torch.nn import functional as F
from torch.utils.data import random_split
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset, Subset
from pl_examples import _DATASETS_PATH
from pl_examples.basic_examples.mnist_datamodule import MNIST
from pl_examples.basic_examples.simple_image_classifier import LitClassifier
from pytorch_lightning import LightningDataModule, seed_everything, Trainer
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.loops.base import Loop
from pytorch_lightning.loops.fit_loop import FitLoop
from pytorch_lightning.trainer.states import TrainerFn
#############################################################################################
# KFold Loop / Cross Validation Example #
# This example demonstrates how to leverage Lightning Loop Customization introduced in v1.5 #
# Learn more about the loop structure from the documentation: #
# https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html #
#############################################################################################
seed_everything(42)
#############################################################################################
# Step 1 / 5: Define KFold DataModule API #
# Our KFold DataModule requires to implement the `setup_folds` and `setup_fold_index` #
# methods. #
#############################################################################################
class BaseKFoldDataModule(LightningDataModule, ABC):
@abstractmethod
def setup_folds(self, num_folds: int) -> None:
pass
@abstractmethod
def setup_fold_index(self, fold_index: int) -> None:
pass
#############################################################################################
# Step 2 / 5: Implement the KFoldDataModule #
# The `KFoldDataModule` will take a train and test dataset. #
# On `setup_folds`, folds will be created depending on the provided argument `num_folds` #
# Our `setup_fold_index`, the provided train dataset will be splitted accordingly to #
# the current fold split. #
#############################################################################################
@dataclass
class MNISTKFoldDataModule(BaseKFoldDataModule):
train_dataset: Optional[Dataset] = None
test_dataset: Optional[Dataset] = None
train_fold: Optional[Dataset] = None
val_fold: Optional[Dataset] = None
def prepare_data(self) -> None:
# download the data.
MNIST(_DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))]))
def setup(self, stage: Optional[str] = None) -> None:
# load the data
dataset = MNIST(_DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))]))
self.train_dataset, self.test_dataset = random_split(dataset, [50000, 10000])
def setup_folds(self, num_folds: int) -> None:
self.num_folds = num_folds
self.splits = [split for split in KFold(num_folds).split(range(len(self.train_dataset)))]
def setup_fold_index(self, fold_index: int) -> None:
train_indices, val_indices = self.splits[fold_index]
self.train_fold = Subset(self.train_dataset, train_indices)
self.val_fold = Subset(self.train_dataset, val_indices)
def train_dataloader(self) -> DataLoader:
return DataLoader(self.train_fold)
def val_dataloader(self) -> DataLoader:
return DataLoader(self.val_fold)
def test_dataloader(self) -> DataLoader:
return DataLoader(self.test_dataset)
#############################################################################################
# Step 3 / 5: Implement the EnsembleVotingModel module #
# The `EnsembleVotingModel` will take our custom LightningModule and #
# several checkpoint_paths. #
# #
#############################################################################################
class EnsembleVotingModel(LightningModule):
def __init__(self, model_cls: Type[LightningModule], checkpoint_paths: List[str]):
super().__init__()
# Create `num_folds` models with their associated fold weights
self.models = torch.nn.ModuleList([model_cls.load_from_checkpoint(p) for p in checkpoint_paths])
def test_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None:
# Compute the averaged predictions over the `num_folds` models.
logits = torch.stack([m(batch[0]) for m in self.models]).mean(0)
loss = F.cross_entropy(logits, batch[1])
self.log("test_loss", loss)
#############################################################################################
# Step 4 / 5: Implement the KFoldLoop #
# From Lightning v1.5, it is possible to implement your own loop. There is several steps #
# to do so which are described in detail within the documentation #
# https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html. #
# Here, we will implement an outer fit_loop. It means we will implement subclass the #
# base Loop and wrap the current trainer `fit_loop`. #
#############################################################################################
#############################################################################################
# Here is the `Pseudo Code` for the base Loop. #
# class Loop: #
# #
# def run(self, ...): #
# self.reset(...) #
# self.on_run_start(...) #
# #
# while not self.done: #
# self.on_advance_start(...) #
# self.advance(...) #
# self.on_advance_end(...) #
# #
# return self.on_run_end(...) #
#############################################################################################
class KFoldLoop(Loop):
def __init__(self, num_folds: int, fit_loop: FitLoop, export_path: str):
super().__init__()
self.num_folds = num_folds
self.fit_loop = fit_loop
self.current_fold: int = 0
self.export_path = export_path
@property
def done(self) -> bool:
return self.current_fold >= self.num_folds
def reset(self) -> None:
"""Nothing to reset in this loop."""
def on_run_start(self, *args: Any, **kwargs: Any) -> None:
"""Used to call `setup_folds` from the `BaseKFoldDataModule` instance and store the original weights of the
model."""
assert isinstance(self.trainer.datamodule, BaseKFoldDataModule)
self.trainer.datamodule.setup_folds(self.num_folds)
self.lightning_module_state_dict = deepcopy(self.trainer.lightning_module.state_dict())
def on_advance_start(self, *args: Any, **kwargs: Any) -> None:
"""Used to call `setup_fold_index` from the `BaseKFoldDataModule` instance."""
print(f"STARTING FOLD {self.current_fold}")
assert isinstance(self.trainer.datamodule, BaseKFoldDataModule)
self.trainer.datamodule.setup_fold_index(self.current_fold)
def advance(self, *args: Any, **kwargs: Any) -> None:
"""Used to the run a fitting and testing on the current hold."""
self._reset_fitting() # requires to reset the tracking stage.
self.fit_loop.run()
self._reset_testing() # requires to reset the tracking stage.
self.trainer.test_loop.run()
self.current_fold += 1 # increment fold tracking number.
def on_advance_end(self) -> None:
"""Used to save the weights of the current fold and reset the LightningModule and its optimizers."""
self.trainer.save_checkpoint(osp.join(self.export_path, f"model.{self.current_fold}.pt"))
# restore the original weights + optimizers and schedulers.
self.trainer.lightning_module.load_state_dict(self.lightning_module_state_dict)
self.trainer.accelerator.setup_optimizers(self.trainer)
def on_run_end(self) -> None:
"""Used to compute the performance of the ensemble model on the test set."""
checkpoint_paths = [osp.join(self.export_path, f"model.{f_idx + 1}.pt") for f_idx in range(self.num_folds)]
voting_model = EnsembleVotingModel(type(self.trainer.lightning_module), checkpoint_paths)
voting_model.trainer = self.trainer
# This requires to connect the new model and move it the right device.
self.trainer.accelerator.connect(voting_model)
self.trainer.training_type_plugin.model_to_device()
self.trainer.test_loop.run()
def on_save_checkpoint(self) -> Dict[str, int]:
return {"current_fold": self.current_fold}
def on_load_checkpoint(self, state_dict: Dict) -> None:
self.current_fold = state_dict["current_fold"]
def _reset_fitting(self) -> None:
self.trainer.reset_train_dataloader()
self.trainer.reset_val_dataloader()
self.trainer.state.fn = TrainerFn.FITTING
self.trainer.training = True
def _reset_testing(self) -> None:
self.trainer.reset_test_dataloader()
self.trainer.state.fn = TrainerFn.TESTING
self.trainer.testing = True
def __getattr__(self, key) -> Any:
# requires to be overridden as attributes of the wrapped loop are being accessed.
if key not in self.__dict__:
return getattr(self.fit_loop, key)
return self.__dict__[key]
#############################################################################################
# Step 5 / 5: Connect the KFoldLoop to the Trainer #
# After creating the `KFoldDataModule` and our model, the `KFoldLoop` is being connected to #
# the Trainer. #
# Finally, use `trainer.fit` to start the cross validation training. #
#############################################################################################
model = LitClassifier()
datamodule = MNISTKFoldDataModule()
trainer = Trainer(
max_epochs=10,
limit_train_batches=2,
limit_val_batches=2,
limit_test_batches=2,
num_sanity_val_steps=0,
devices=1,
accelerator="auto",
strategy="ddp",
)
trainer.fit_loop = KFoldLoop(5, trainer.fit_loop, export_path="./")
trainer.fit(model, datamodule)

View File

@ -1225,7 +1225,8 @@ class Trainer(
# reload data when needed
model = self.lightning_module
self.reset_train_val_dataloaders(model)
if isinstance(self.fit_loop, FitLoop):
self.reset_train_val_dataloaders(model)
self.fit_loop.trainer = self
with torch.autograd.set_detect_anomaly(self._detect_anomaly):