228 lines
6.2 KiB
Python
228 lines
6.2 KiB
Python
|
# NOTE: This file only tests if modules with arguments are running fine.
|
||
|
# The actual metric implementation is tested in functional/test_classification.py
|
||
|
# Especially reduction and reducing across processes won't be tested here!
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from pytorch_lightning.metrics.classification import (
|
||
|
Accuracy,
|
||
|
ConfusionMatrix,
|
||
|
PrecisionRecall,
|
||
|
Precision,
|
||
|
Recall,
|
||
|
AveragePrecision,
|
||
|
AUROC,
|
||
|
FBeta,
|
||
|
F1,
|
||
|
ROC,
|
||
|
MulticlassROC,
|
||
|
MulticlassPrecisionRecall,
|
||
|
DiceCoefficient,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def random():
|
||
|
torch.manual_seed(0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('num_classes', [1, None])
|
||
|
def test_accuracy(num_classes):
|
||
|
acc = Accuracy(num_classes=num_classes)
|
||
|
|
||
|
assert acc.name == 'accuracy'
|
||
|
|
||
|
result = acc(pred=torch.tensor([[0, 1, 1], [1, 0, 1]]),
|
||
|
target=torch.tensor([[0, 0, 1], [1, 0, 1]]))
|
||
|
|
||
|
assert isinstance(result, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('normalize', [False, True])
|
||
|
def test_confusion_matrix(normalize):
|
||
|
conf_matrix = ConfusionMatrix(normalize=normalize)
|
||
|
assert conf_matrix.name == 'confusion_matrix'
|
||
|
|
||
|
target = (torch.arange(120) % 3).view(-1, 1)
|
||
|
pred = target.clone()
|
||
|
|
||
|
cm = conf_matrix(pred, target)
|
||
|
|
||
|
assert isinstance(cm, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('pos_label', [1, 2.])
|
||
|
def test_precision_recall(pos_label):
|
||
|
pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 0, 0, 1])
|
||
|
|
||
|
pr_curve = PrecisionRecall(pos_label=pos_label)
|
||
|
assert pr_curve.name == 'precision_recall_curve'
|
||
|
|
||
|
pr = pr_curve(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4])
|
||
|
|
||
|
assert isinstance(pr, tuple)
|
||
|
assert len(pr) == 3
|
||
|
for tmp in pr:
|
||
|
assert isinstance(tmp, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('num_classes', [1, None])
|
||
|
def test_precision(num_classes):
|
||
|
precision = Precision(num_classes=num_classes)
|
||
|
|
||
|
assert precision.name == 'precision'
|
||
|
pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 0, 0, 1])
|
||
|
|
||
|
prec = precision(pred=pred, target=target)
|
||
|
|
||
|
assert isinstance(prec, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('num_classes', [1, None])
|
||
|
def test_recall(num_classes):
|
||
|
recall = Recall(num_classes=num_classes)
|
||
|
|
||
|
assert recall.name == 'recall'
|
||
|
pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 0, 0, 1])
|
||
|
|
||
|
rec = recall(pred=pred, target=target)
|
||
|
|
||
|
assert isinstance(rec, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('pos_label', [1, 2])
|
||
|
def test_average_precision(pos_label):
|
||
|
pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 0, 1])
|
||
|
|
||
|
avg_prec = AveragePrecision(pos_label=pos_label)
|
||
|
assert avg_prec.name == 'AP'
|
||
|
|
||
|
ap = avg_prec(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4])
|
||
|
|
||
|
assert isinstance(ap, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('pos_label', [1, 2])
|
||
|
def test_auroc(pos_label):
|
||
|
pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 0, 1])
|
||
|
|
||
|
auroc = AUROC(pos_label=pos_label)
|
||
|
assert auroc.name == 'auroc'
|
||
|
|
||
|
area = auroc(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4])
|
||
|
|
||
|
assert isinstance(area, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(['beta', 'num_classes'], [
|
||
|
pytest.param(0., 1),
|
||
|
pytest.param(0.5, 1),
|
||
|
pytest.param(1., 1),
|
||
|
pytest.param(2., 1),
|
||
|
pytest.param(0., None),
|
||
|
pytest.param(0.5, None),
|
||
|
pytest.param(1., None),
|
||
|
pytest.param(2., None)
|
||
|
])
|
||
|
def test_fbeta(beta, num_classes):
|
||
|
fbeta = FBeta(beta=beta, num_classes=num_classes)
|
||
|
assert fbeta.name == 'fbeta'
|
||
|
|
||
|
score = fbeta(pred=torch.tensor([[0, 1, 1], [1, 0, 1]]),
|
||
|
target=torch.tensor([[0, 0, 1], [1, 0, 1]]))
|
||
|
|
||
|
assert isinstance(score, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('num_classes', [1, None])
|
||
|
def test_f1(num_classes):
|
||
|
f1 = F1(num_classes=num_classes)
|
||
|
assert f1.name == 'f1'
|
||
|
|
||
|
score = f1(pred=torch.tensor([[0, 1, 1], [1, 0, 1]]),
|
||
|
target=torch.tensor([[0, 0, 1], [1, 0, 1]]))
|
||
|
|
||
|
assert isinstance(score, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('pos_label', [1, 2])
|
||
|
def test_roc(pos_label):
|
||
|
pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 4, 3])
|
||
|
|
||
|
roc = ROC(pos_label=pos_label)
|
||
|
assert roc.name == 'roc'
|
||
|
|
||
|
res = roc(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4])
|
||
|
|
||
|
assert isinstance(res, tuple)
|
||
|
assert len(res) == 3
|
||
|
for tmp in res:
|
||
|
assert isinstance(tmp, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('num_classes', [4, None])
|
||
|
def test_multiclass_roc(num_classes):
|
||
|
pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
|
||
|
[0.05, 0.85, 0.05, 0.05],
|
||
|
[0.05, 0.05, 0.85, 0.05],
|
||
|
[0.05, 0.05, 0.05, 0.85]])
|
||
|
target = torch.tensor([0, 1, 3, 2])
|
||
|
|
||
|
multi_roc = MulticlassROC(num_classes=num_classes)
|
||
|
|
||
|
assert multi_roc.name == 'multiclass_roc'
|
||
|
|
||
|
res = multi_roc(pred, target)
|
||
|
|
||
|
assert isinstance(res, tuple)
|
||
|
|
||
|
if num_classes is not None:
|
||
|
assert len(res) == num_classes
|
||
|
|
||
|
for tmp in res:
|
||
|
assert isinstance(tmp, tuple)
|
||
|
assert len(tmp) == 3
|
||
|
|
||
|
for _tmp in tmp:
|
||
|
assert isinstance(_tmp, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('num_classes', [4, None])
|
||
|
def test_multiclass_pr(num_classes):
|
||
|
pred = torch.tensor([[0.85, 0.05, 0.05, 0.05],
|
||
|
[0.05, 0.85, 0.05, 0.05],
|
||
|
[0.05, 0.05, 0.85, 0.05],
|
||
|
[0.05, 0.05, 0.05, 0.85]])
|
||
|
target = torch.tensor([0, 1, 3, 2])
|
||
|
|
||
|
multi_pr = MulticlassPrecisionRecall(num_classes=num_classes)
|
||
|
|
||
|
assert multi_pr.name == 'multiclass_precision_recall_curve'
|
||
|
|
||
|
pr = multi_pr(pred, target)
|
||
|
|
||
|
assert isinstance(pr, tuple)
|
||
|
|
||
|
if num_classes is not None:
|
||
|
assert len(pr) == num_classes
|
||
|
|
||
|
for tmp in pr:
|
||
|
assert isinstance(tmp, tuple)
|
||
|
assert len(tmp) == 3
|
||
|
|
||
|
for _tmp in tmp:
|
||
|
assert isinstance(_tmp, torch.Tensor)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('include_background', [True, False])
|
||
|
def test_dice_coefficient(include_background):
|
||
|
dice_coeff = DiceCoefficient(include_background=include_background)
|
||
|
|
||
|
assert dice_coeff.name == 'dice'
|
||
|
|
||
|
dice = dice_coeff(torch.randint(0, 1, (10, 25, 25)),
|
||
|
torch.randint(0, 1, (10, 25, 25)))
|
||
|
|
||
|
assert isinstance(dice, torch.Tensor)
|