lightning/tests/base/model_train_steps.py

41 lines
1.1 KiB
Python
Raw Normal View History

import math
from abc import ABC
from collections import OrderedDict
import torch
class TrainingStepVariations(ABC):
"""
Houses all variations of training steps
"""
test_step_inf_loss = float('inf')
def training_step(self, batch, batch_idx, optimizer_idx=None):
"""Lightning calls this inside the training loop"""
# forward pass
x, y = batch
x = x.view(x.size(0), -1)
y_hat = self(x)
# calculate loss
loss_val = self.loss(y, y_hat)
# alternate possible outputs to test
output = OrderedDict({
'loss': loss_val,
'progress_bar': {'some_val': loss_val * loss_val},
'log': {'train_some_val': loss_val * loss_val},
})
return output
def training_step__inf_loss(self, batch, batch_idx, optimizer_idx=None):
output = self.training_step(batch, batch_idx, optimizer_idx)
if batch_idx == self.test_step_inf_loss:
if isinstance(output, dict):
output['loss'] *= torch.tensor(math.inf) # make loss infinite
else:
output /= 0
return output