lightning/pytorch_lightning/metrics/functional/nlp.py

93 lines
3.3 KiB
Python
Raw Normal View History

# referenced from
# Library Name: torchtext
# Authors: torchtext authors and @sluks
# Date: 2020-07-18
# Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score
from collections import Counter
from typing import Sequence, List
import torch
def _count_ngram(ngram_input_list: List[str], n_gram: int) -> Counter:
"""Counting how many times each word appears in a given text with ngram
Args:
ngram_input_list: A list of translated text or reference texts
n_gram: gram value ranged 1 to 4
Return:
ngram_counter: a collections.Counter object of ngram
"""
ngram_counter = Counter()
for i in range(1, n_gram + 1):
for j in range(len(ngram_input_list) - i + 1):
ngram_key = tuple(ngram_input_list[j : i + j])
ngram_counter[ngram_key] += 1
return ngram_counter
def bleu_score(
translate_corpus: Sequence[str], reference_corpus: Sequence[str], n_gram: int = 4, smooth: bool = False
) -> torch.Tensor:
"""Calculate BLEU score of machine translated text with one or more references.
Args:
translate_corpus: An iterable of machine translated corpus
reference_corpus: An iterable of iterables of reference corpus
n_gram: Gram value ranged from 1 to 4 (Default 4)
smooth: Whether or not to apply smoothing Lin et al. 2004
Return:
A Tensor with BLEU Score
Example:
>>> translate_corpus = ['the cat is on the mat'.split()]
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.split()]]
>>> bleu_score(translate_corpus, reference_corpus)
tensor(0.7598)
"""
assert len(translate_corpus) == len(reference_corpus)
numerator = torch.zeros(n_gram)
denominator = torch.zeros(n_gram)
precision_scores = torch.zeros(n_gram)
c = 0.0
r = 0.0
for (translation, references) in zip(translate_corpus, reference_corpus):
c += len(translation)
ref_len_list = [len(ref) for ref in references]
ref_len_diff = [abs(len(translation) - x) for x in ref_len_list]
r += ref_len_list[ref_len_diff.index(min(ref_len_diff))]
translation_counter = _count_ngram(translation, n_gram)
reference_counter = Counter()
for ref in references:
reference_counter |= _count_ngram(ref, n_gram)
ngram_counter_clip = translation_counter & reference_counter
for counter_clip in ngram_counter_clip:
numerator[len(counter_clip) - 1] += ngram_counter_clip[counter_clip]
for counter in translation_counter:
denominator[len(counter) - 1] += translation_counter[counter]
trans_len = torch.tensor(c)
ref_len = torch.tensor(r)
if min(numerator) == 0.0:
return torch.tensor(0.0)
if smooth:
precision_scores = torch.add(numerator, torch.ones(n_gram)) / torch.add(denominator, torch.ones(n_gram))
else:
precision_scores = numerator / denominator
log_precision_scores = torch.tensor([1.0 / n_gram] * n_gram) * torch.log(precision_scores)
geometric_mean = torch.exp(torch.sum(log_precision_scores))
brevity_penalty = torch.tensor(1.0) if c > r else torch.exp(1 - (ref_len / trans_len))
bleu = brevity_penalty * geometric_mean
return bleu