# referenced from # Library Name: torchtext # Authors: torchtext authors and @sluks # Date: 2020-07-18 # Link: https://pytorch.org/text/_modules/torchtext/data/metrics.html#bleu_score from collections import Counter from typing import Sequence, List import torch def _count_ngram(ngram_input_list: List[str], n_gram: int) -> Counter: """Counting how many times each word appears in a given text with ngram Args: ngram_input_list: A list of translated text or reference texts n_gram: gram value ranged 1 to 4 Return: ngram_counter: a collections.Counter object of ngram """ ngram_counter = Counter() for i in range(1, n_gram + 1): for j in range(len(ngram_input_list) - i + 1): ngram_key = tuple(ngram_input_list[j : i + j]) ngram_counter[ngram_key] += 1 return ngram_counter def bleu_score( translate_corpus: Sequence[str], reference_corpus: Sequence[str], n_gram: int = 4, smooth: bool = False ) -> torch.Tensor: """Calculate BLEU score of machine translated text with one or more references. Args: translate_corpus: An iterable of machine translated corpus reference_corpus: An iterable of iterables of reference corpus n_gram: Gram value ranged from 1 to 4 (Default 4) smooth: Whether or not to apply smoothing – Lin et al. 2004 Return: A Tensor with BLEU Score Example: >>> translate_corpus = ['the cat is on the mat'.split()] >>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.split()]] >>> bleu_score(translate_corpus, reference_corpus) tensor(0.7598) """ assert len(translate_corpus) == len(reference_corpus) numerator = torch.zeros(n_gram) denominator = torch.zeros(n_gram) precision_scores = torch.zeros(n_gram) c = 0.0 r = 0.0 for (translation, references) in zip(translate_corpus, reference_corpus): c += len(translation) ref_len_list = [len(ref) for ref in references] ref_len_diff = [abs(len(translation) - x) for x in ref_len_list] r += ref_len_list[ref_len_diff.index(min(ref_len_diff))] translation_counter = _count_ngram(translation, n_gram) reference_counter = Counter() for ref in references: reference_counter |= _count_ngram(ref, n_gram) ngram_counter_clip = translation_counter & reference_counter for counter_clip in ngram_counter_clip: numerator[len(counter_clip) - 1] += ngram_counter_clip[counter_clip] for counter in translation_counter: denominator[len(counter) - 1] += translation_counter[counter] trans_len = torch.tensor(c) ref_len = torch.tensor(r) if min(numerator) == 0.0: return torch.tensor(0.0) if smooth: precision_scores = torch.add(numerator, torch.ones(n_gram)) / torch.add(denominator, torch.ones(n_gram)) else: precision_scores = numerator / denominator log_precision_scores = torch.tensor([1.0 / n_gram] * n_gram) * torch.log(precision_scores) geometric_mean = torch.exp(torch.sum(log_precision_scores)) brevity_penalty = torch.tensor(1.0) if c > r else torch.exp(1 - (ref_len / trans_len)) bleu = brevity_penalty * geometric_mean return bleu