182 lines
11 KiB
ReStructuredText
182 lines
11 KiB
ReStructuredText
|
:orphan:
|
||
|
|
||
|
.. _profiler_intermediate:
|
||
|
|
||
|
############################################
|
||
|
Find bottlenecks in your code (intermediate)
|
||
|
############################################
|
||
|
**Audience**: Users who want to see more granular profiling information
|
||
|
|
||
|
----
|
||
|
|
||
|
**************************
|
||
|
Profile pytorch operations
|
||
|
**************************
|
||
|
To understand the cost of each PyTorch operation, use the :class:`~pytorch_lightning.profiler.pytorch.PyTorchProfiler` built on top of the `PyTorch profiler <https://pytorch.org/docs/master/profiler.html>`__.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
from pytorch_lightning.profiler import PyTorchProfiler
|
||
|
|
||
|
profiler = PyTorchProfiler()
|
||
|
trainer = Trainer(profiler=profiler)
|
||
|
|
||
|
The profiler will generate an output like this:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
Profiler Report
|
||
|
|
||
|
Profile stats for: training_step
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
t 62.10% 1.044ms 62.77% 1.055ms 1.055ms
|
||
|
addmm 32.32% 543.135us 32.69% 549.362us 549.362us
|
||
|
mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us
|
||
|
mean 0.22% 3.694us 2.05% 34.523us 34.523us
|
||
|
div_ 0.64% 10.756us 1.90% 32.001us 16.000us
|
||
|
ones_like 0.21% 3.461us 0.81% 13.669us 13.669us
|
||
|
sum_out 0.45% 7.638us 0.74% 12.432us 12.432us
|
||
|
transpose 0.23% 3.786us 0.68% 11.393us 11.393us
|
||
|
as_strided 0.60% 10.060us 0.60% 10.060us 3.353us
|
||
|
to 0.18% 3.059us 0.44% 7.464us 7.464us
|
||
|
empty_like 0.14% 2.387us 0.41% 6.859us 6.859us
|
||
|
empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us
|
||
|
fill_ 0.28% 4.782us 0.33% 5.566us 2.783us
|
||
|
expand 0.20% 3.336us 0.28% 4.743us 4.743us
|
||
|
empty 0.27% 4.456us 0.27% 4.456us 2.228us
|
||
|
copy_ 0.15% 2.526us 0.15% 2.526us 2.526us
|
||
|
broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us
|
||
|
size 0.06% 0.967us 0.06% 0.967us 0.484us
|
||
|
is_complex 0.06% 0.961us 0.06% 0.961us 0.481us
|
||
|
stride 0.03% 0.517us 0.03% 0.517us 0.517us
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
Self CPU time total: 1.681ms
|
||
|
|
||
|
.. note::
|
||
|
When using the PyTorch Profiler, wall clock time will not not be representative of the true wall clock time.
|
||
|
This is due to forcing profiled operations to be measured synchronously, when many CUDA ops happen asynchronously.
|
||
|
It is recommended to use this Profiler to find bottlenecks/breakdowns, however for end to end wall clock time use
|
||
|
the ``SimpleProfiler``.
|
||
|
|
||
|
----
|
||
|
|
||
|
***************************
|
||
|
Profile a distributed model
|
||
|
***************************
|
||
|
To profile a distributed model, use the :class:`~pytorch_lightning.profiler.pytorch.PyTorchProfiler` with the *filename* argument which will save a report per rank.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
from pytorch_lightning.profiler import PyTorchProfiler
|
||
|
|
||
|
profiler = PyTorchProfiler(filename="perf-logs")
|
||
|
trainer = Trainer(profiler=profiler)
|
||
|
|
||
|
With two ranks, it will generate a report like so:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
Profiler Report: rank 0
|
||
|
|
||
|
Profile stats for: training_step
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
t 62.10% 1.044ms 62.77% 1.055ms 1.055ms
|
||
|
addmm 32.32% 543.135us 32.69% 549.362us 549.362us
|
||
|
mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us
|
||
|
mean 0.22% 3.694us 2.05% 34.523us 34.523us
|
||
|
div_ 0.64% 10.756us 1.90% 32.001us 16.000us
|
||
|
ones_like 0.21% 3.461us 0.81% 13.669us 13.669us
|
||
|
sum_out 0.45% 7.638us 0.74% 12.432us 12.432us
|
||
|
transpose 0.23% 3.786us 0.68% 11.393us 11.393us
|
||
|
as_strided 0.60% 10.060us 0.60% 10.060us 3.353us
|
||
|
to 0.18% 3.059us 0.44% 7.464us 7.464us
|
||
|
empty_like 0.14% 2.387us 0.41% 6.859us 6.859us
|
||
|
empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us
|
||
|
fill_ 0.28% 4.782us 0.33% 5.566us 2.783us
|
||
|
expand 0.20% 3.336us 0.28% 4.743us 4.743us
|
||
|
empty 0.27% 4.456us 0.27% 4.456us 2.228us
|
||
|
copy_ 0.15% 2.526us 0.15% 2.526us 2.526us
|
||
|
broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us
|
||
|
size 0.06% 0.967us 0.06% 0.967us 0.484us
|
||
|
is_complex 0.06% 0.961us 0.06% 0.961us 0.481us
|
||
|
stride 0.03% 0.517us 0.03% 0.517us 0.517us
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
Self CPU time total: 1.681ms
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
Profiler Report: rank 1
|
||
|
|
||
|
Profile stats for: training_step
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
t 42.10% 1.044ms 62.77% 1.055ms 1.055ms
|
||
|
addmm 32.32% 543.135us 32.69% 549.362us 549.362us
|
||
|
mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us
|
||
|
mean 0.22% 3.694us 2.05% 34.523us 34.523us
|
||
|
div_ 0.64% 10.756us 1.90% 32.001us 16.000us
|
||
|
ones_like 0.21% 3.461us 0.81% 13.669us 13.669us
|
||
|
sum_out 0.45% 7.638us 0.74% 12.432us 12.432us
|
||
|
transpose 0.23% 3.786us 0.68% 11.393us 11.393us
|
||
|
as_strided 0.60% 10.060us 0.60% 10.060us 3.353us
|
||
|
to 0.18% 3.059us 0.44% 7.464us 7.464us
|
||
|
empty_like 0.14% 2.387us 0.41% 6.859us 6.859us
|
||
|
empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us
|
||
|
fill_ 0.28% 4.782us 0.33% 5.566us 2.783us
|
||
|
expand 0.20% 3.336us 0.28% 4.743us 4.743us
|
||
|
empty 0.27% 4.456us 0.27% 4.456us 2.228us
|
||
|
copy_ 0.15% 2.526us 0.15% 2.526us 2.526us
|
||
|
broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us
|
||
|
size 0.06% 0.967us 0.06% 0.967us 0.484us
|
||
|
is_complex 0.06% 0.961us 0.06% 0.961us 0.481us
|
||
|
stride 0.03% 0.517us 0.03% 0.517us 0.517us
|
||
|
--------------------- --------------- --------------- --------------- --------------- ---------------
|
||
|
Self CPU time total: 1.681ms
|
||
|
|
||
|
This profiler will record ``training_step``, ``backward``, ``validation_step``, ``test_step``, and ``predict_step`` by default.
|
||
|
The output below shows the profiling for the action ``training_step``. The user can provide ``PyTorchProfiler(record_functions={...})``
|
||
|
to extend the scope of profiled functions.
|
||
|
|
||
|
.. note::
|
||
|
When using the PyTorch Profiler, wall clock time will not not be representative of the true wall clock time.
|
||
|
This is due to forcing profiled operations to be measured synchronously, when many CUDA ops happen asynchronously.
|
||
|
It is recommended to use this Profiler to find bottlenecks/breakdowns, however for end to end wall clock time use
|
||
|
the ``SimpleProfiler``.
|
||
|
|
||
|
----
|
||
|
|
||
|
*****************************
|
||
|
Visualize profiled operations
|
||
|
*****************************
|
||
|
To visualize the profiled operations, enable **emit_nvtx** in the :class:`~pytorch_lightning.profiler.pytorch.PyTorchProfiler`.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
from pytorch_lightning.profiler import PyTorchProfiler
|
||
|
|
||
|
profiler = PyTorchProfiler(emit_nvtx=True)
|
||
|
trainer = Trainer(profiler=profiler)
|
||
|
|
||
|
Then run as following:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
nvprof --profile-from-start off -o trace_name.prof -- <regular command here>
|
||
|
|
||
|
To visualize the profiled operation, you can either use **nvvp**:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
nvvp trace_name.prof
|
||
|
|
||
|
or python:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
python -c 'import torch; print(torch.autograd.profiler.load_nvprof("trace_name.prof"))'
|