:orphan: .. _profiler_intermediate: ############################################ Find bottlenecks in your code (intermediate) ############################################ **Audience**: Users who want to see more granular profiling information ---- ************************** Profile pytorch operations ************************** To understand the cost of each PyTorch operation, use the :class:`~pytorch_lightning.profiler.pytorch.PyTorchProfiler` built on top of the `PyTorch profiler `__. .. code-block:: python from pytorch_lightning.profiler import PyTorchProfiler profiler = PyTorchProfiler() trainer = Trainer(profiler=profiler) The profiler will generate an output like this: .. code-block:: Profiler Report Profile stats for: training_step --------------------- --------------- --------------- --------------- --------------- --------------- Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg --------------------- --------------- --------------- --------------- --------------- --------------- t 62.10% 1.044ms 62.77% 1.055ms 1.055ms addmm 32.32% 543.135us 32.69% 549.362us 549.362us mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us mean 0.22% 3.694us 2.05% 34.523us 34.523us div_ 0.64% 10.756us 1.90% 32.001us 16.000us ones_like 0.21% 3.461us 0.81% 13.669us 13.669us sum_out 0.45% 7.638us 0.74% 12.432us 12.432us transpose 0.23% 3.786us 0.68% 11.393us 11.393us as_strided 0.60% 10.060us 0.60% 10.060us 3.353us to 0.18% 3.059us 0.44% 7.464us 7.464us empty_like 0.14% 2.387us 0.41% 6.859us 6.859us empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us fill_ 0.28% 4.782us 0.33% 5.566us 2.783us expand 0.20% 3.336us 0.28% 4.743us 4.743us empty 0.27% 4.456us 0.27% 4.456us 2.228us copy_ 0.15% 2.526us 0.15% 2.526us 2.526us broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us size 0.06% 0.967us 0.06% 0.967us 0.484us is_complex 0.06% 0.961us 0.06% 0.961us 0.481us stride 0.03% 0.517us 0.03% 0.517us 0.517us --------------------- --------------- --------------- --------------- --------------- --------------- Self CPU time total: 1.681ms .. note:: When using the PyTorch Profiler, wall clock time will not not be representative of the true wall clock time. This is due to forcing profiled operations to be measured synchronously, when many CUDA ops happen asynchronously. It is recommended to use this Profiler to find bottlenecks/breakdowns, however for end to end wall clock time use the ``SimpleProfiler``. ---- *************************** Profile a distributed model *************************** To profile a distributed model, use the :class:`~pytorch_lightning.profiler.pytorch.PyTorchProfiler` with the *filename* argument which will save a report per rank. .. code-block:: python from pytorch_lightning.profiler import PyTorchProfiler profiler = PyTorchProfiler(filename="perf-logs") trainer = Trainer(profiler=profiler) With two ranks, it will generate a report like so: .. code-block:: Profiler Report: rank 0 Profile stats for: training_step --------------------- --------------- --------------- --------------- --------------- --------------- Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg --------------------- --------------- --------------- --------------- --------------- --------------- t 62.10% 1.044ms 62.77% 1.055ms 1.055ms addmm 32.32% 543.135us 32.69% 549.362us 549.362us mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us mean 0.22% 3.694us 2.05% 34.523us 34.523us div_ 0.64% 10.756us 1.90% 32.001us 16.000us ones_like 0.21% 3.461us 0.81% 13.669us 13.669us sum_out 0.45% 7.638us 0.74% 12.432us 12.432us transpose 0.23% 3.786us 0.68% 11.393us 11.393us as_strided 0.60% 10.060us 0.60% 10.060us 3.353us to 0.18% 3.059us 0.44% 7.464us 7.464us empty_like 0.14% 2.387us 0.41% 6.859us 6.859us empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us fill_ 0.28% 4.782us 0.33% 5.566us 2.783us expand 0.20% 3.336us 0.28% 4.743us 4.743us empty 0.27% 4.456us 0.27% 4.456us 2.228us copy_ 0.15% 2.526us 0.15% 2.526us 2.526us broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us size 0.06% 0.967us 0.06% 0.967us 0.484us is_complex 0.06% 0.961us 0.06% 0.961us 0.481us stride 0.03% 0.517us 0.03% 0.517us 0.517us --------------------- --------------- --------------- --------------- --------------- --------------- Self CPU time total: 1.681ms .. code-block:: Profiler Report: rank 1 Profile stats for: training_step --------------------- --------------- --------------- --------------- --------------- --------------- Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg --------------------- --------------- --------------- --------------- --------------- --------------- t 42.10% 1.044ms 62.77% 1.055ms 1.055ms addmm 32.32% 543.135us 32.69% 549.362us 549.362us mse_loss 1.35% 22.657us 3.58% 60.105us 60.105us mean 0.22% 3.694us 2.05% 34.523us 34.523us div_ 0.64% 10.756us 1.90% 32.001us 16.000us ones_like 0.21% 3.461us 0.81% 13.669us 13.669us sum_out 0.45% 7.638us 0.74% 12.432us 12.432us transpose 0.23% 3.786us 0.68% 11.393us 11.393us as_strided 0.60% 10.060us 0.60% 10.060us 3.353us to 0.18% 3.059us 0.44% 7.464us 7.464us empty_like 0.14% 2.387us 0.41% 6.859us 6.859us empty_strided 0.38% 6.351us 0.38% 6.351us 3.175us fill_ 0.28% 4.782us 0.33% 5.566us 2.783us expand 0.20% 3.336us 0.28% 4.743us 4.743us empty 0.27% 4.456us 0.27% 4.456us 2.228us copy_ 0.15% 2.526us 0.15% 2.526us 2.526us broadcast_tensors 0.15% 2.492us 0.15% 2.492us 2.492us size 0.06% 0.967us 0.06% 0.967us 0.484us is_complex 0.06% 0.961us 0.06% 0.961us 0.481us stride 0.03% 0.517us 0.03% 0.517us 0.517us --------------------- --------------- --------------- --------------- --------------- --------------- Self CPU time total: 1.681ms This profiler will record ``training_step``, ``backward``, ``validation_step``, ``test_step``, and ``predict_step`` by default. The output below shows the profiling for the action ``training_step``. The user can provide ``PyTorchProfiler(record_functions={...})`` to extend the scope of profiled functions. .. note:: When using the PyTorch Profiler, wall clock time will not not be representative of the true wall clock time. This is due to forcing profiled operations to be measured synchronously, when many CUDA ops happen asynchronously. It is recommended to use this Profiler to find bottlenecks/breakdowns, however for end to end wall clock time use the ``SimpleProfiler``. ---- ***************************** Visualize profiled operations ***************************** To visualize the profiled operations, enable **emit_nvtx** in the :class:`~pytorch_lightning.profiler.pytorch.PyTorchProfiler`. .. code-block:: python from pytorch_lightning.profiler import PyTorchProfiler profiler = PyTorchProfiler(emit_nvtx=True) trainer = Trainer(profiler=profiler) Then run as following: .. code-block:: nvprof --profile-from-start off -o trace_name.prof -- To visualize the profiled operation, you can either use **nvvp**: .. code-block:: nvvp trace_name.prof or python: .. code-block:: python -c 'import torch; print(torch.autograd.profiler.load_nvprof("trace_name.prof"))'