lightning/tests/core/test_datamodules.py

460 lines
13 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from argparse import ArgumentParser
from unittest.mock import MagicMock
from typing import Optional
import pytest
2020-08-06 14:58:51 +00:00
import torch
from torch.utils.data import DataLoader, random_split
from pytorch_lightning import LightningDataModule, Trainer
from pytorch_lightning.trainer.states import TrainerState
from tests.base import EvalModelTemplate
from tests.base.datasets import TrialMNIST
from tests.base.datamodules import TrialMNISTDataModule
from tests.base.develop_utils import reset_seed
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.accelerators.gpu_accelerator import GPUAccelerator
from pytorch_lightning.callbacks import ModelCheckpoint
def test_can_prepare_data(tmpdir):
dm = TrialMNISTDataModule()
trainer = Trainer()
trainer.datamodule = dm
# 1 no DM
# prepare_data_per_node = True
# local rank = 0 (True)
trainer.prepare_data_per_node = True
trainer.local_rank = 0
assert trainer.data_connector.can_prepare_data()
# local rank = 1 (False)
trainer.local_rank = 1
assert not trainer.data_connector.can_prepare_data()
# prepare_data_per_node = False (prepare across all nodes)
# global rank = 0 (True)
trainer.prepare_data_per_node = False
trainer.node_rank = 0
trainer.local_rank = 0
assert trainer.data_connector.can_prepare_data()
# global rank = 1 (False)
trainer.node_rank = 1
trainer.local_rank = 0
assert not trainer.data_connector.can_prepare_data()
trainer.node_rank = 0
trainer.local_rank = 1
assert not trainer.data_connector.can_prepare_data()
# 2 dm
# prepar per node = True
# local rank = 0 (True)
trainer.prepare_data_per_node = True
trainer.local_rank = 0
# is_overridden prepare data = True
# has been called
# False
dm._has_prepared_data = True
assert not trainer.data_connector.can_prepare_data()
# has not been called
# True
dm._has_prepared_data = False
assert trainer.data_connector.can_prepare_data()
# is_overridden prepare data = False
# True
dm.prepare_data = None
assert trainer.data_connector.can_prepare_data()
def test_hooks_no_recursion_error(tmpdir):
# hooks were appended in cascade every tine a new data module was instantiated leading to a recursion error.
# See https://github.com/PyTorchLightning/pytorch-lightning/issues/3652
class DummyDM(LightningDataModule):
def setup(self, *args, **kwargs):
pass
def prepare_data(self, *args, **kwargs):
pass
for i in range(1005):
dm = DummyDM()
dm.setup()
dm.prepare_data()
def test_base_datamodule(tmpdir):
dm = TrialMNISTDataModule()
dm.prepare_data()
dm.setup()
def test_base_datamodule_with_verbose_setup(tmpdir):
dm = TrialMNISTDataModule()
dm.prepare_data()
dm.setup('fit')
dm.setup('test')
def test_data_hooks_called(tmpdir):
dm = TrialMNISTDataModule()
assert dm.has_prepared_data is False
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.prepare_data()
assert dm.has_prepared_data is True
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.setup()
assert dm.has_prepared_data is True
assert dm.has_setup_fit is True
assert dm.has_setup_test is True
def test_data_hooks_called_verbose(tmpdir):
dm = TrialMNISTDataModule()
assert dm.has_prepared_data is False
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.prepare_data()
assert dm.has_prepared_data is True
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.setup('fit')
assert dm.has_prepared_data is True
assert dm.has_setup_fit is True
assert dm.has_setup_test is False
dm.setup('test')
assert dm.has_prepared_data is True
assert dm.has_setup_fit is True
assert dm.has_setup_test is True
def test_data_hooks_called_with_stage_kwarg(tmpdir):
dm = TrialMNISTDataModule()
dm.prepare_data()
assert dm.has_prepared_data is True
dm.setup(stage='fit')
assert dm.has_setup_fit is True
assert dm.has_setup_test is False
dm.setup(stage='test')
assert dm.has_setup_fit is True
assert dm.has_setup_test is True
def test_dm_add_argparse_args(tmpdir):
parser = ArgumentParser()
parser = TrialMNISTDataModule.add_argparse_args(parser)
args = parser.parse_args(['--data_dir', './my_data'])
assert args.data_dir == './my_data'
def test_dm_init_from_argparse_args(tmpdir):
parser = ArgumentParser()
parser = TrialMNISTDataModule.add_argparse_args(parser)
args = parser.parse_args(['--data_dir', './my_data'])
dm = TrialMNISTDataModule.from_argparse_args(args)
dm.prepare_data()
dm.setup()
def test_dm_pickle_after_init(tmpdir):
dm = TrialMNISTDataModule()
pickle.dumps(dm)
def test_train_loop_only(tmpdir):
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
model.test_step = None
model.test_step_end = None
model.test_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
assert trainer.logger_connector.callback_metrics['loss'] < 0.6
def test_train_val_loop_only(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
assert trainer.logger_connector.callback_metrics['loss'] < 0.6
def test_dm_checkpoint_save(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on')],
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
checkpoint_path = list(trainer.checkpoint_callback.best_k_models.keys())[0]
checkpoint = torch.load(checkpoint_path)
assert dm.__class__.__name__ in checkpoint
assert checkpoint[dm.__class__.__name__] == dm.__class__.__name__
def test_test_loop_only(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
)
trainer.test(model, datamodule=dm)
def test_full_loop(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
2020-08-13 10:29:27 +00:00
deterministic=True,
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
def test_trainer_attached_to_dm(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
deterministic=True,
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
assert dm.trainer is not None
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert dm.trainer is not None
@pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine")
def test_full_loop_single_gpu(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
2020-08-13 10:29:27 +00:00
gpus=1,
deterministic=True,
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_full_loop_dp(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
accelerator='dp',
2020-08-13 10:29:27 +00:00
gpus=2,
deterministic=True,
)
# fit model
trainer.fit(model, dm)
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
@pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine")
def test_dm_transfer_batch_to_device(tmpdir):
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestDM(LightningDataModule):
hook_called = False
def transfer_batch_to_device(self, data, device):
self.hook_called = True
if isinstance(data, CustomBatch):
data.samples = data.samples.to(device)
data.targets = data.targets.to(device)
else:
data = super().transfer_batch_to_device(data, device)
return data
model = EvalModelTemplate()
dm = CurrentTestDM()
batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer(gpus=1)
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
trainer.get_model = MagicMock(return_value=model)
if is_overridden('transfer_batch_to_device', dm):
model.transfer_batch_to_device = dm.transfer_batch_to_device
trainer.accelerator_backend = GPUAccelerator(trainer)
batch_gpu = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0'))
expected = torch.device('cuda', 0)
assert dm.hook_called
assert batch_gpu.samples.device == batch_gpu.targets.device == expected
class CustomMNISTDataModule(LightningDataModule):
def __init__(self, data_dir: str = "./"):
super().__init__()
self.data_dir = data_dir
self._epochs_called_for = []
def prepare_data(self):
TrialMNIST(self.data_dir, train=True, download=True)
def setup(self, stage: Optional[str] = None):
mnist_full = TrialMNIST(
root=self.data_dir, train=True, num_samples=64, download=True
)
self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64])
self.dims = self.mnist_train[0][0].shape
def train_dataloader(self):
assert self.trainer.current_epoch not in self._epochs_called_for
self._epochs_called_for.append(self.trainer.current_epoch)
return DataLoader(self.mnist_train, batch_size=4)
def test_dm_reload_dataloaders_every_epoch(tmpdir):
"""Test datamodule, where trainer argument
reload_dataloaders_every_epoch is set to True/False"""
dm = CustomMNISTDataModule(tmpdir)
model = EvalModelTemplate()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
model.test_step = None
model.test_step_end = None
model.test_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=0.01,
reload_dataloaders_every_epoch=True,
)
trainer.fit(model, dm)