2019-07-25 16:01:52 +00:00
|
|
|
import torch
|
|
|
|
from torch.nn import functional as F
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from torchvision.datasets import MNIST
|
2019-10-22 08:32:40 +00:00
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
|
|
|
|
|
2019-10-06 21:57:23 +00:00
|
|
|
# from test_models import assert_ok_test_acc, load_model, \
|
2020-03-25 11:46:27 +00:00
|
|
|
# clear_save_dir, get_default_testtube_logger, get_default_hparams, init_save_dir, \
|
2019-10-10 19:16:19 +00:00
|
|
|
# init_checkpoint_callback, reset_seed, set_random_master_port
|
2019-07-25 16:01:52 +00:00
|
|
|
|
|
|
|
|
2019-08-07 06:02:55 +00:00
|
|
|
class CoolModel(pl.LightningModule):
|
2019-07-25 16:01:52 +00:00
|
|
|
|
|
|
|
def __init(self):
|
2020-03-27 12:36:50 +00:00
|
|
|
super().__init__()
|
2019-07-25 16:01:52 +00:00
|
|
|
# not the best model...
|
|
|
|
self.l1 = torch.nn.Linear(28 * 28, 10)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return torch.relu(self.l1(x))
|
|
|
|
|
|
|
|
def my_loss(self, y_hat, y):
|
|
|
|
return F.cross_entropy(y_hat, y)
|
|
|
|
|
2019-12-04 11:57:10 +00:00
|
|
|
def training_step(self, batch, batch_idx):
|
2019-07-25 16:01:52 +00:00
|
|
|
x, y = batch
|
2020-03-27 07:17:56 +00:00
|
|
|
y_hat = self(x)
|
2019-09-25 23:05:06 +00:00
|
|
|
return {'training_loss': self.my_loss(y_hat, y)}
|
2019-07-25 16:01:52 +00:00
|
|
|
|
2019-12-04 11:57:10 +00:00
|
|
|
def validation_step(self, batch, batch_idx):
|
2019-07-25 16:01:52 +00:00
|
|
|
x, y = batch
|
2020-03-27 07:17:56 +00:00
|
|
|
y_hat = self(x)
|
2019-07-25 16:01:52 +00:00
|
|
|
return {'val_loss': self.my_loss(y_hat, y)}
|
|
|
|
|
2020-03-06 00:31:57 +00:00
|
|
|
def validation_epoch_end(self, outputs):
|
2019-07-25 16:01:52 +00:00
|
|
|
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
|
|
|
return avg_loss
|
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
|
|
|
|
2019-09-25 23:05:06 +00:00
|
|
|
def train_dataloader(self):
|
2019-07-25 16:01:52 +00:00
|
|
|
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
|
|
|
|
|
|
|
def val_dataloader(self):
|
|
|
|
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
|
|
|
|
|
|
|
def test_dataloader(self):
|
|
|
|
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|