lightning/tests/tests_lite/test_cli.py

157 lines
5.8 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
from unittest.mock import Mock
import pytest
import torch.distributed.run
from tests_lite.helpers.runif import RunIf
from lightning_lite.cli import _run_model
@pytest.fixture
def fake_script(tmp_path):
script = tmp_path / "script.py"
script.touch()
return str(script)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_cli_env_vars_defaults(monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script])
assert e.value.code == 0
assert os.environ["LT_CLI_USED"] == "1"
assert os.environ["LT_ACCELERATOR"] == "cpu"
assert "LT_STRATEGY" not in os.environ
assert os.environ["LT_DEVICES"] == "1"
assert os.environ["LT_NUM_NODES"] == "1"
assert os.environ["LT_PRECISION"] == "32"
@pytest.mark.parametrize("accelerator", ["cpu", "gpu", "cuda", pytest.param("mps", marks=RunIf(mps=True))])
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
@mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=2)
def test_cli_env_vars_accelerator(_, accelerator, monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--accelerator", accelerator])
assert e.value.code == 0
assert os.environ["LT_ACCELERATOR"] == accelerator
@pytest.mark.parametrize("strategy", ["dp", "ddp", "deepspeed"])
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
@mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=2)
def test_cli_env_vars_strategy(_, strategy, monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--strategy", strategy])
assert e.value.code == 0
assert os.environ["LT_STRATEGY"] == strategy
@pytest.mark.parametrize("devices", ["1", "2", "0,", "1,0", "-1"])
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
@mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=2)
def test_cli_env_vars_devices_cuda(_, devices, monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--accelerator", "cuda", "--devices", devices])
assert e.value.code == 0
assert os.environ["LT_DEVICES"] == devices
@RunIf(mps=True)
@pytest.mark.parametrize("accelerator", ["mps", "gpu"])
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_cli_env_vars_devices_mps(accelerator, monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--accelerator", accelerator])
assert e.value.code == 0
assert os.environ["LT_DEVICES"] == "1"
@pytest.mark.parametrize("num_nodes", ["1", "2", "3"])
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_cli_env_vars_num_nodes(num_nodes, monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--num-nodes", num_nodes])
assert e.value.code == 0
assert os.environ["LT_NUM_NODES"] == num_nodes
@pytest.mark.parametrize("precision", ["64", "32", "16", "bf16"])
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_cli_env_vars_precision(precision, monkeypatch, fake_script):
monkeypatch.setattr(torch.distributed, "run", Mock())
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--precision", precision])
assert e.value.code == 0
assert os.environ["LT_PRECISION"] == precision
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
def test_cli_torchrun_defaults(monkeypatch, fake_script):
torchrun_mock = Mock()
monkeypatch.setattr(torch.distributed, "run", torchrun_mock)
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script])
assert e.value.code == 0
torchrun_mock.main.assert_called_with(
[
"--nproc_per_node=1",
"--nnodes=1",
"--node_rank=0",
"--master_addr=127.0.0.1",
"--master_port=29400",
fake_script,
]
)
@pytest.mark.parametrize(
"devices,expected",
[
("1", 1),
("2", 2),
("0,", 1),
("1,0,2", 3),
("-1", 5),
],
)
@mock.patch.dict(os.environ, os.environ.copy(), clear=True)
@mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=5)
def test_cli_torchrun_num_processes_launched(_, devices, expected, monkeypatch, fake_script):
torchrun_mock = Mock()
monkeypatch.setattr(torch.distributed, "run", torchrun_mock)
with pytest.raises(SystemExit) as e:
_run_model.main([fake_script, "--accelerator", "cuda", "--devices", devices])
assert e.value.code == 0
torchrun_mock.main.assert_called_with(
[
f"--nproc_per_node={expected}",
"--nnodes=1",
"--node_rank=0",
"--master_addr=127.0.0.1",
"--master_port=29400",
fake_script,
]
)