# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock from unittest.mock import Mock import pytest import torch.distributed.run from tests_lite.helpers.runif import RunIf from lightning_lite.cli import _run_model @pytest.fixture def fake_script(tmp_path): script = tmp_path / "script.py" script.touch() return str(script) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_cli_env_vars_defaults(monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script]) assert e.value.code == 0 assert os.environ["LT_CLI_USED"] == "1" assert os.environ["LT_ACCELERATOR"] == "cpu" assert "LT_STRATEGY" not in os.environ assert os.environ["LT_DEVICES"] == "1" assert os.environ["LT_NUM_NODES"] == "1" assert os.environ["LT_PRECISION"] == "32" @pytest.mark.parametrize("accelerator", ["cpu", "gpu", "cuda", pytest.param("mps", marks=RunIf(mps=True))]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) @mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=2) def test_cli_env_vars_accelerator(_, accelerator, monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--accelerator", accelerator]) assert e.value.code == 0 assert os.environ["LT_ACCELERATOR"] == accelerator @pytest.mark.parametrize("strategy", ["dp", "ddp", "deepspeed"]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) @mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=2) def test_cli_env_vars_strategy(_, strategy, monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--strategy", strategy]) assert e.value.code == 0 assert os.environ["LT_STRATEGY"] == strategy @pytest.mark.parametrize("devices", ["1", "2", "0,", "1,0", "-1"]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) @mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=2) def test_cli_env_vars_devices_cuda(_, devices, monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--accelerator", "cuda", "--devices", devices]) assert e.value.code == 0 assert os.environ["LT_DEVICES"] == devices @RunIf(mps=True) @pytest.mark.parametrize("accelerator", ["mps", "gpu"]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_cli_env_vars_devices_mps(accelerator, monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--accelerator", accelerator]) assert e.value.code == 0 assert os.environ["LT_DEVICES"] == "1" @pytest.mark.parametrize("num_nodes", ["1", "2", "3"]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_cli_env_vars_num_nodes(num_nodes, monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--num-nodes", num_nodes]) assert e.value.code == 0 assert os.environ["LT_NUM_NODES"] == num_nodes @pytest.mark.parametrize("precision", ["64", "32", "16", "bf16"]) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_cli_env_vars_precision(precision, monkeypatch, fake_script): monkeypatch.setattr(torch.distributed, "run", Mock()) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--precision", precision]) assert e.value.code == 0 assert os.environ["LT_PRECISION"] == precision @mock.patch.dict(os.environ, os.environ.copy(), clear=True) def test_cli_torchrun_defaults(monkeypatch, fake_script): torchrun_mock = Mock() monkeypatch.setattr(torch.distributed, "run", torchrun_mock) with pytest.raises(SystemExit) as e: _run_model.main([fake_script]) assert e.value.code == 0 torchrun_mock.main.assert_called_with( [ "--nproc_per_node=1", "--nnodes=1", "--node_rank=0", "--master_addr=127.0.0.1", "--master_port=29400", fake_script, ] ) @pytest.mark.parametrize( "devices,expected", [ ("1", 1), ("2", 2), ("0,", 1), ("1,0,2", 3), ("-1", 5), ], ) @mock.patch.dict(os.environ, os.environ.copy(), clear=True) @mock.patch("lightning_lite.accelerators.cuda.num_cuda_devices", return_value=5) def test_cli_torchrun_num_processes_launched(_, devices, expected, monkeypatch, fake_script): torchrun_mock = Mock() monkeypatch.setattr(torch.distributed, "run", torchrun_mock) with pytest.raises(SystemExit) as e: _run_model.main([fake_script, "--accelerator", "cuda", "--devices", devices]) assert e.value.code == 0 torchrun_mock.main.assert_called_with( [ f"--nproc_per_node={expected}", "--nnodes=1", "--node_rank=0", "--master_addr=127.0.0.1", "--master_port=29400", fake_script, ] )