170 lines
7.6 KiB
Markdown
170 lines
7.6 KiB
Markdown
# Genie NLP library
|
|
|
|
[![Build Status](https://travis-ci.com/stanford-oval/genienlp.svg?branch=master)](https://travis-ci.com/stanford-oval/genienlp) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/stanford-oval/genienlp.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/stanford-oval/genienlp/context:python)
|
|
|
|
This library contains the NLP models for the [Genie](https://github.com/stanford-oval/genie-toolkit) toolkit for
|
|
virtual assistants. It is derived from the [decaNLP](https://github.com/salesforce/decaNLP) library by Salesforce,
|
|
but has diverged significantly.
|
|
|
|
The library is suitable for all NLP tasks that can be framed as Contextual Question Answering, that is, with 3 inputs:
|
|
|
|
- text or structured input as _context_
|
|
- text input as _question_
|
|
- text or structured output as _answer_
|
|
|
|
As the work by [McCann et al.](https://arxiv.org/abs/1806.08730) shows, many different NLP tasks can be framed in this way.
|
|
Genie primarily uses the library for paraphrasing, translation, semantic parsing, and dialogue state tracking, and this is
|
|
what the models work best for.
|
|
|
|
## Installation
|
|
|
|
genienlp is available on PyPi. You can install it with:
|
|
|
|
```bash
|
|
pip3 install genienlp
|
|
```
|
|
|
|
After installation, `genienlp` command becomes available.
|
|
|
|
## Usage
|
|
|
|
### Training a semantic parser
|
|
|
|
The general form is:
|
|
```bash
|
|
genienlp train --tasks almond --train_iterations 50000 --data <datadir> --save <modeldir> <flags>
|
|
```
|
|
|
|
The `<datadir>` should contain a single folder called "almond" (the name of the task). That folder should
|
|
contain the files "train.tsv" and "eval.tsv" for train and dev set respectively.
|
|
|
|
To train a BERT-LSTM (or other MLM-based model) use:
|
|
```bash
|
|
genienlp train --tasks almond --train_iterations 50000 --data <datadir> --save <modeldir> \
|
|
--model TransformerLSTM --pretrained_model bert-base-cased --trainable_decoder_embedding 50
|
|
```
|
|
|
|
To train a BART or other Seq2Seq model, use:
|
|
```bash
|
|
genienlp train --tasks almond --train_iterations 50000 --data <datadir> --save <modeldir> \
|
|
--model TransformerSeq2Seq --pretrained_model facebook/bart-large --gradient_accumulation_steps 20
|
|
```
|
|
|
|
The default batch sizes are tuned for training on a single V100 GPU. Use `--train_batch_tokens` and `--val_batch_size`
|
|
to control the batch sizes. See `genienlp train --help` for the full list of options.
|
|
|
|
**NOTE**: the BERT-LSTM model used by the current version of the library is not comparable with the
|
|
one used in our published paper (cited below), because the input preprocessing is different. If you
|
|
wish to compare with published results you should use genienlp <= 0.5.0.
|
|
|
|
### Inference on a semantic parser
|
|
|
|
In batch mode:
|
|
```bash
|
|
genienlp predict --tasks almond --data <datadir> --path <modeldir> --eval_dir <output>
|
|
```
|
|
|
|
The `<datadir>` should contain a single folder called "almond" (the name of the task). That folder should
|
|
contain the files "train.tsv" and "eval.tsv" for train and dev set respectively. The result of batch prediction
|
|
will be saved in `<output>/almond/valid.tsv`, as a TSV file containing ID and prediction.
|
|
|
|
In interactive mode:
|
|
```bash
|
|
genienlp server --path <modeldir>
|
|
```
|
|
|
|
Opens a TCP server that listens to requests, formatted as JSON objects containing `id` (the ID of the request),
|
|
`task` (the name of the task), `context` and `question`. The server writes out JSON objects containing `id` and
|
|
`answer`. The server listens to port 8401 by default, use `--port` to specify a different port or `--stdin` to
|
|
use standard input/output instead of TCP.
|
|
|
|
### Calibrating a trained model
|
|
Calibrate the confidence scores of a trained model:
|
|
|
|
1. Calcualate and save confidence features of the evaluation set in a pickle file:
|
|
```bash
|
|
genienlp predict --task almond --data <datadir> --path <modeldir> --save_confidence_features --confidence_feature_path <confidence_feature_file>
|
|
```
|
|
|
|
1. Train a boosted tree to map confidence features to a score between 0 and 1:
|
|
```bash
|
|
genienlp calibrate --confidence_path <confidence_feature_file> --save <calibrator_path>
|
|
````
|
|
|
|
1. Now if you provide `--calibrator_path` during prediction, it will output confidence scores for each output:
|
|
```bash
|
|
genienlp predict --tasks almond --data <datadir> --path <modeldir> --calibrator_path <calibrator_path>
|
|
```
|
|
|
|
### Paraphrasing
|
|
Train a paraphrasing model:
|
|
|
|
```bash
|
|
genienlp train-paraphrase --train_data_file <train_data_file> --eval_data_file <dev_data_file> --output_dir <modeldir> --model_type gpt2 --do_train --do_eval --evaluate_during_training --logging_steps 1000 --save_steps 1000 --max_steps 40000 --save_total_limit 2 --gradient_accumulation_steps 16 --per_gpu_eval_batch_size 4 --per_gpu_train_batch_size 4 --num_train_epochs 1 --model_name_or_path <gpt2/gpt2-medium/gpt2-large/gpt2-xlarge>
|
|
```
|
|
|
|
Generate paraphrases:
|
|
|
|
```bash
|
|
genienlp run-paraphrase --model_type gpt2 --model_name_or_path <modeldir> --temperature 0.3 --repetition_penalty 1.0 --num_samples 4 --length 15 --batch_size 32 --input_file <input tsv file> --input_column 1
|
|
```
|
|
|
|
See `genienlp --help` and `genienlp <command> --help` for details about each argument.
|
|
|
|
## Citation
|
|
|
|
If you use the MultiTask Question Answering model in your work, please cite [*The Natural Language Decathlon: Multitask Learning as Question Answering*](https://arxiv.org/abs/1806.08730).
|
|
|
|
```bibtex
|
|
@article{McCann2018decaNLP,
|
|
title={The Natural Language Decathlon: Multitask Learning as Question Answering},
|
|
author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher},
|
|
journal={arXiv preprint arXiv:1806.08730},
|
|
year={2018}
|
|
}
|
|
```
|
|
|
|
If you use the BERT-LSTM model (Identity encoder + MQAN decoder), please cite [Schema2QA: High-Quality and Low-Cost Q&A Agents for the Structured Web](https://arxiv.org/abs/2001.05609)
|
|
|
|
```bibtex
|
|
@InProceedings{xu2020schema2qa,
|
|
title={{Schema2QA}: High-Quality and Low-Cost {Q\&A} Agents for the Structured Web},
|
|
author={Silei Xu and Giovanni Campagna and Jian Li and Monica S. Lam},
|
|
booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management},
|
|
year={2020},
|
|
doi={https://doi.org/10.1145/3340531.3411974}
|
|
}
|
|
```
|
|
|
|
If you use the paraphrasing model (BART or GPT-2 fine-tuned on a paraphrasing dataset), please cite [AutoQA: From Databases to QA Semantic Parsers with Only Synthetic Training Data](https://arxiv.org/abs/2010.04806)
|
|
|
|
```bibtex
|
|
@inproceedings{xu-etal-2020-autoqa,
|
|
title = "{A}uto{QA}: From Databases to {QA} Semantic Parsers with Only Synthetic Training Data",
|
|
author = "Xu, Silei and Semnani, Sina and Campagna, Giovanni and Lam, Monica",
|
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
|
month = nov,
|
|
year = "2020",
|
|
address = "Online",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://www.aclweb.org/anthology/2020.emnlp-main.31",
|
|
pages = "422--434",
|
|
}
|
|
```
|
|
|
|
If you use MarianMT/ mBART/ T5 for translation task, or XLMR-LSTM model for Seq2Seq tasks, please cite [Localizing Open-Ontology QA Semantic Parsers in a Day Using Machine Translation](https://arxiv.org/abs/2010.05106) and the original paper that introduced the model.
|
|
|
|
```bibtex
|
|
@inproceedings{moradshahi-etal-2020-localizing,
|
|
title = "Localizing Open-Ontology {QA} Semantic Parsers in a Day Using Machine Translation",
|
|
author = "Moradshahi, Mehrad and Campagna, Giovanni and Semnani, Sina and Xu, Silei and Lam, Monica",
|
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
|
month = November,
|
|
year = "2020",
|
|
address = "Online",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://www.aclweb.org/anthology/2020.emnlp-main.481",
|
|
pages = "5970--5983",
|
|
}
|
|
```
|