34 lines
1.1 KiB
Bash
34 lines
1.1 KiB
Bash
#!/usr/bin/env bash
|
|
|
|
. ./tests/lib.sh
|
|
|
|
i=0
|
|
# test kfserver
|
|
for hparams in \
|
|
"--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random" ;
|
|
do
|
|
|
|
# train
|
|
pipenv run python3 -m genienlp train --train_tasks almond --train_batch_tokens 50 --val_batch_size 50 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $EMBEDDING_DIR --no_commit
|
|
|
|
# run kfserver in background
|
|
(pipenv run python3 -m genienlp kfserver --path $workdir/model_$i)&
|
|
SERVER_PID=$!
|
|
# wait enough for the server to start
|
|
sleep 15
|
|
|
|
# send predict request via http
|
|
request='{"id":"123", "task": "generic", "instances": [{"context": "", "question": "what is the weather"}]}'
|
|
status=`curl -s -o /dev/stderr -w "%{http_code}" http://localhost:8080/v1/models/nlp:predict -d "$request"`
|
|
kill $SERVER_PID
|
|
if [[ "$status" -ne 200 ]]; then
|
|
echo "Unexpected http status: $status"
|
|
exit 1
|
|
fi
|
|
rm -rf $workdir/model_$i
|
|
i=$((i+1))
|
|
done
|
|
|
|
rm -fr $workdir
|
|
rm -rf $SRCDIR/torch-shm-file-*
|