#!/usr/bin/env bash . ./tests/lib.sh i=0 # test kfserver for hparams in \ "--model TransformerSeq2Seq --pretrained_model sshleifer/bart-tiny-random" ; do # train pipenv run python3 -m genienlp train --train_tasks almond --train_batch_tokens 50 --val_batch_size 50 --train_iterations 6 --preserve_case --save_every 2 --log_every 2 --val_every 2 --save $workdir/model_$i --data $SRCDIR/dataset/ $hparams --exist_ok --skip_cache --embeddings $EMBEDDING_DIR --no_commit # run kfserver in background (pipenv run python3 -m genienlp kfserver --path $workdir/model_$i)& SERVER_PID=$! # wait enough for the server to start sleep 15 # send predict request via http request='{"id":"123", "task": "generic", "instances": [{"context": "", "question": "what is the weather"}]}' status=`curl -s -o /dev/stderr -w "%{http_code}" http://localhost:8080/v1/models/nlp:predict -d "$request"` kill $SERVER_PID if [[ "$status" -ne 200 ]]; then echo "Unexpected http status: $status" exit 1 fi rm -rf $workdir/model_$i i=$((i+1)) done rm -fr $workdir rm -rf $SRCDIR/torch-shm-file-*