boinc/sched/sched_send.cpp

1605 lines
53 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// scheduler code related to sending jobs.
// NOTE: there should be nothing here specific to particular
// scheduling policies (array scan, matchmaking, locality)
#include "config.h"
#include <vector>
#include <list>
#include <string>
#include <ctime>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include "error_numbers.h"
#include "parse.h"
#include "util.h"
#include "str_util.h"
#include "synch.h"
#include "sched_types.h"
#include "sched_shmem.h"
#include "sched_config.h"
#include "sched_util.h"
#include "sched_main.h"
#include "sched_array.h"
#include "sched_msgs.h"
#include "sched_hr.h"
#include "hr.h"
#include "sched_locality.h"
#include "sched_timezone.h"
#include "sched_assign.h"
#include "sched_customize.h"
#include "sched_send.h"
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
// if host sends us an impossible RAM size, use this instead
//
const double DEFAULT_RAM_SIZE = 64000000;
void send_work_matchmaker();
int preferred_app_message_index=0;
const char* infeasible_string(int code) {
switch (code) {
case INFEASIBLE_MEM: return "Not enough memory";
case INFEASIBLE_DISK: return "Not enough disk";
case INFEASIBLE_CPU: return "CPU too slow";
case INFEASIBLE_APP_SETTING: return "App not selected";
case INFEASIBLE_WORKLOAD: return "Existing workload";
case INFEASIBLE_DUP: return "Already in reply";
case INFEASIBLE_HR: return "Homogeneous redundancy";
case INFEASIBLE_BANDWIDTH: return "Download bandwidth too low";
}
return "Unknown";
}
const double MIN_REQ_SECS = 0;
const double MAX_REQ_SECS = (28*SECONDS_IN_DAY);
const int MAX_CUDA_DEVS = 8;
// don't believe clients who claim they have more CUDA devices than this
// get limits on #jobs per day and per RPC, on in progress
//
void WORK_REQ::get_job_limits() {
int n;
n = g_reply->host.p_ncpus;
if (g_request->global_prefs.max_ncpus_pct && g_request->global_prefs.max_ncpus_pct < 100) {
n = (int)((n*g_request->global_prefs.max_ncpus_pct)/100.);
}
if (n > config.max_ncpus) n = config.max_ncpus;
if (n < 1) n = 1;
effective_ncpus = n;
n = 0;
COPROC* cp = g_request->coprocs.lookup("CUDA");
if (cp) {
n = cp->count;
if (n > MAX_CUDA_DEVS) n = MAX_CUDA_DEVS;
}
effective_ngpus = n;
int mult = effective_ncpus + config.gpu_multiplier * effective_ngpus;
if (config.non_cpu_intensive) {
mult = 1;
effective_ncpus = 1;
if (effective_ngpus) effective_ngpus = 1;
}
if (config.max_wus_to_send) {
g_wreq->max_jobs_per_rpc = mult * config.max_wus_to_send;
} else {
g_wreq->max_jobs_per_rpc = 999999;
}
if (config.daily_result_quota) {
if (g_reply->host.max_results_day == 0 || g_reply->host.max_results_day>config.daily_result_quota) {
g_reply->host.max_results_day = config.daily_result_quota;
}
g_wreq->max_jobs_per_day = mult * g_reply->host.max_results_day;
} else {
g_wreq->max_jobs_per_day = 999999;
}
if (config.max_wus_in_progress) {
g_wreq->max_jobs_on_host_cpu = config.max_wus_in_progress * effective_ncpus;
if (config.max_wus_in_progress_gpu) {
g_wreq->max_jobs_on_host_gpu = config.max_wus_in_progress_gpu * effective_ngpus;
g_wreq->max_jobs_on_host = g_wreq->max_jobs_on_host_cpu + g_wreq->max_jobs_on_host_gpu;
} else {
g_wreq->max_jobs_on_host_gpu = 999999;
g_wreq->max_jobs_on_host = g_wreq->max_jobs_on_host_cpu;
}
} else {
g_wreq->max_jobs_on_host_cpu = 999999;
g_wreq->max_jobs_on_host = 999999;
if (config.max_wus_in_progress_gpu) {
g_wreq->max_jobs_on_host_gpu = config.max_wus_in_progress_gpu * effective_ngpus;
} else {
g_wreq->max_jobs_on_host_gpu = 999999;
}
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] effective_ncpus %d max_jobs_on_host_cpu %d max_jobs_on_host %d\n",
effective_ncpus, g_wreq->max_jobs_on_host_cpu, g_wreq->max_jobs_on_host
);
log_messages.printf(MSG_NORMAL,
"[send] effective_ngpus %d max_jobs_on_host_gpu %d\n",
effective_ngpus, g_wreq->max_jobs_on_host_gpu
);
}
}
static const char* find_user_friendly_name(int appid) {
APP* app = ssp->lookup_app(appid);
if (app) return app->user_friendly_name;
return "deprecated application";
}
// Compute the max additional disk usage we can impose on the host.
// Depending on the client version, it can either send us
// - d_total and d_free (pre 4 oct 2005)
// - the above plus d_boinc_used_total and d_boinc_used_project
//
double max_allowable_disk() {
HOST host = g_request->host;
GLOBAL_PREFS prefs = g_request->global_prefs;
double x1, x2, x3, x;
// defaults are from config.xml
// if not there these are used:
// -default_max_used_gb= 100
// -default_max_used_pct = 50
// -default_min_free_gb = .001
//
if (prefs.disk_max_used_gb == 0) {
prefs.disk_max_used_gb = config.default_disk_max_used_gb;
}
if (prefs.disk_max_used_pct == 0) {
prefs.disk_max_used_pct = config.default_disk_max_used_pct;
}
if (prefs.disk_min_free_gb < config.default_disk_min_free_gb) {
prefs.disk_min_free_gb = config.default_disk_min_free_gb;
}
// no defaults for total/free disk space (host.d_total, d_free)
// if they're zero, client will get no work.
//
if (host.d_boinc_used_total) {
// The post 4 oct 2005 case.
// Compute the max allowable additional disk usage based on prefs
//
x1 = prefs.disk_max_used_gb*GIGA - host.d_boinc_used_total;
x2 = host.d_total*prefs.disk_max_used_pct/100.
- host.d_boinc_used_total;
x3 = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative
x = std::min(x1, std::min(x2, x3));
// see which bound is the most stringent
//
if (x==x1) {
g_reply->disk_limits.max_used = x;
} else if (x==x2) {
g_reply->disk_limits.max_frac = x;
} else {
g_reply->disk_limits.min_free = x;
}
} else {
// here we don't know how much space BOINC is using.
// so we're kinda screwed.
// All we can do is assume that BOINC is using zero space.
// We can't honor the max_used for max_used_pct preferences.
// We can only honor the min_free pref.
//
x = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative
g_reply->disk_limits.min_free = x;
x1 = x2 = x3 = 0;
}
if (x < 0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] No disk space available: disk_max_used_gb %.2fGB disk_max_used_pct %.2f disk_min_free_gb %.2fGB\n",
prefs.disk_max_used_gb/GIGA,
prefs.disk_max_used_pct,
prefs.disk_min_free_gb/GIGA
);
log_messages.printf(MSG_NORMAL,
"[send] No disk space available: host.d_total %.2fGB host.d_free %.2fGB host.d_boinc_used_total %.2fGB\n",
host.d_total/GIGA,
host.d_free/GIGA,
host.d_boinc_used_total/GIGA
);
log_messages.printf(MSG_NORMAL,
"[send] No disk space available: x1 %.2fGB x2 %.2fGB x3 %.2fGB x %.2fGB\n",
x1/GIGA, x2/GIGA, x3/GIGA, x/GIGA
);
}
g_wreq->disk.set_insufficient(-x);
x = 0;
}
return x;
}
static double estimate_duration_unscaled(WORKUNIT& wu, BEST_APP_VERSION& bav) {
double rsc_fpops_est = wu.rsc_fpops_est;
if (rsc_fpops_est <= 0) rsc_fpops_est = 1e12;
return rsc_fpops_est/bav.host_usage.flops;
}
static inline void get_running_frac() {
double rf;
if (g_request->core_client_version<=419) {
rf = g_reply->host.on_frac;
} else {
rf = g_reply->host.active_frac * g_reply->host.on_frac;
}
// clamp running_frac and DCF to a reasonable range
//
if (rf > 1) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL, "running_frac=%f; setting to 1\n", rf);
}
rf = 1;
} else if (rf < .1) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL, "running_frac=%f; setting to 0.1\n", rf);
}
rf = .1;
}
g_wreq->running_frac = rf;
}
static inline void get_dcf() {
double dcf = g_reply->host.duration_correction_factor;
if (dcf > 10) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] DCF=%f; setting to 10\n", dcf
);
}
dcf = 10;
} else if (dcf < 0.1) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] DCF=%f; setting to 0.1\n", dcf
);
}
dcf = 0.1;
}
g_wreq->dcf = dcf;
}
// estimate the amount of real time to complete this WU,
// taking into account active_frac etc.
// Note: don't factor in resource_share_fraction.
// The core client no longer necessarily does round-robin
// across all projects.
//
double estimate_duration(WORKUNIT& wu, BEST_APP_VERSION& bav) {
double edu = estimate_duration_unscaled(wu, bav);
double ed = edu/g_wreq->running_frac;
if (!config.ignore_dcf) {
ed *= g_wreq->dcf;
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] est. duration for WU %d: unscaled %.2f scaled %.2f\n",
wu.id, edu, ed
);
}
return ed;
}
static void get_prefs_info() {
char buf[8096];
std::string str;
unsigned int pos = 0;
int temp_int;
bool flag;
extract_venue(g_reply->user.project_prefs, g_reply->host.venue, buf);
str = buf;
// scan user's project prefs for elements of the form <app_id>N</app_id>,
// indicating the apps they want to run.
//
g_wreq->preferred_apps.clear();
while (parse_int(str.substr(pos,str.length()-pos).c_str(), "<app_id>", temp_int)) {
APP_INFO ai;
ai.appid = temp_int;
ai.work_available = false;
g_wreq->preferred_apps.push_back(ai);
pos = str.find("<app_id>", pos) + 1;
}
if (parse_bool(buf,"allow_non_preferred_apps", flag)) {
g_wreq->allow_non_preferred_apps = flag;
}
if (parse_bool(buf,"allow_beta_work", flag)) {
g_wreq->allow_beta_work = flag;
}
if (parse_bool(buf,"no_gpus", flag)) {
// deprecated, but need to handle
if (flag) {
g_wreq->no_cuda = true;
g_wreq->no_ati = true;
}
}
if (parse_bool(buf,"no_cpu", flag)) {
g_wreq->no_cpu = flag;
}
if (parse_bool(buf,"no_cuda", flag)) {
g_wreq->no_cuda = flag;
}
if (parse_bool(buf,"no_ati", flag)) {
g_wreq->no_ati = flag;
}
}
// Find or compute various info about the host;
// this info affects which jobs are sent to the host.
//
static void get_host_info() {
double expavg_credit = g_reply->host.expavg_credit;
double expavg_time = g_reply->host.expavg_time;
update_average(0, 0, CREDIT_HALF_LIFE, expavg_credit, expavg_time);
// Decide whether or not this computer is 'reliable'
// A computer is reliable if the following conditions are true
// (for those that are set in the config file)
// 1) The host average turnaround is less than the config
// max average turnaround
// 2) The host error rate is less then the config max error rate
// 3) The host results per day is equal to the config file value
// Platforms other than Windows, Linux and Intel Macs need a
// larger set of computers to be marked reliable
//
double multiplier = 1.0;
if (strstr(g_reply->host.os_name,"Windows")
|| strstr(g_reply->host.os_name,"Linux")
|| (strstr(g_reply->host.os_name,"Darwin")
&& !(strstr(g_reply->host.p_vendor,"Power Macintosh"))
)) {
multiplier = 1.0;
} else {
multiplier = 1.8;
}
if (g_reply->host.avg_turnaround > 0 && config.reliable_max_avg_turnaround) {
if (g_reply->host.avg_turnaround > config.reliable_max_avg_turnaround*multiplier) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] not reliable; avg_turn_hrs: %.3f\n",
g_reply->host.id, g_reply->host.avg_turnaround/3600
);
}
g_wreq->reliable = false;
return;
}
}
if (config.reliable_max_error_rate) {
if (g_reply->host.error_rate > config.reliable_max_error_rate*multiplier) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] not reliable; error rate: %.6f\n",
g_reply->host.id, g_reply->host.error_rate
);
}
g_wreq->reliable = false;
return;
}
}
if (config.daily_result_quota) {
if (g_reply->host.max_results_day < config.daily_result_quota) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] not reliable; max_result_day %d\n",
g_reply->host.id, g_reply->host.max_results_day
);
}
g_wreq->reliable = false;
return;
}
}
g_wreq->reliable = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] is reliable\n",
g_reply->host.id
);
}
}
// Return true if the user has set application preferences,
// and this job is not for a selected app
//
bool app_not_selected(WORKUNIT& wu) {
unsigned int i;
if (g_wreq->preferred_apps.size() == 0) return false;
for (i=0; i<g_wreq->preferred_apps.size(); i++) {
if (wu.appid == g_wreq->preferred_apps[i].appid) {
g_wreq->preferred_apps[i].work_available = true;
return false;
}
}
return true;
}
// see how much RAM we can use on this machine
//
static inline void get_mem_sizes() {
g_wreq->ram = g_reply->host.m_nbytes;
if (g_wreq->ram <= 0) g_wreq->ram = DEFAULT_RAM_SIZE;
g_wreq->usable_ram = g_wreq->ram;
double busy_frac = g_request->global_prefs.ram_max_used_busy_frac;
double idle_frac = g_request->global_prefs.ram_max_used_idle_frac;
double frac = 1;
if (busy_frac>0 && idle_frac>0) {
frac = std::max(busy_frac, idle_frac);
if (frac > 1) frac = 1;
g_wreq->usable_ram *= frac;
}
}
static inline int check_memory(WORKUNIT& wu) {
double diff = wu.rsc_memory_bound - g_wreq->usable_ram;
if (diff > 0) {
char message[256];
sprintf(message,
"%s needs %0.2f MB RAM but only %0.2f MB is available for use.",
find_user_friendly_name(wu.appid),
wu.rsc_memory_bound/MEGA, g_wreq->usable_ram/MEGA
);
add_no_work_message(message);
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%d %s] needs %0.2fMB RAM; [HOST#%d] has %0.2fMB, %0.2fMB usable\n",
wu.id, wu.name, wu.rsc_memory_bound/MEGA,
g_reply->host.id, g_wreq->ram/MEGA, g_wreq->usable_ram/MEGA
);
}
g_wreq->mem.set_insufficient(wu.rsc_memory_bound);
g_reply->set_delay(DELAY_NO_WORK_TEMP);
return INFEASIBLE_MEM;
}
return 0;
}
static inline int check_disk(WORKUNIT& wu) {
double diff = wu.rsc_disk_bound - g_wreq->disk_available;
if (diff > 0) {
char message[256];
sprintf(message,
"%s needs %0.2fMB more disk space. You currently have %0.2f MB available and it needs %0.2f MB.",
find_user_friendly_name(wu.appid),
diff/MEGA, g_wreq->disk_available/MEGA, wu.rsc_disk_bound/MEGA
);
add_no_work_message(message);
g_wreq->disk.set_insufficient(diff);
return INFEASIBLE_DISK;
}
return 0;
}
static inline int check_bandwidth(WORKUNIT& wu) {
if (wu.rsc_bandwidth_bound == 0) return 0;
// if n_bwdown is zero, the host has never downloaded anything,
// so skip this check
//
if (g_reply->host.n_bwdown == 0) return 0;
double diff = wu.rsc_bandwidth_bound - g_reply->host.n_bwdown;
if (diff > 0) {
char message[256];
sprintf(message,
"%s requires %0.2f KB/sec download bandwidth. Your computer has been measured at %0.2f KB/sec.",
find_user_friendly_name(wu.appid),
wu.rsc_bandwidth_bound/KILO, g_reply->host.n_bwdown/KILO
);
add_no_work_message(message);
g_wreq->bandwidth.set_insufficient(diff);
return INFEASIBLE_BANDWIDTH;
}
return 0;
}
// Determine if the app is "hard",
// and we should send it only to high-end hosts.
// Currently this is specified by setting weight=-1;
// this is a kludge for SETI@home/Astropulse.
//
static inline bool hard_app(APP& app) {
return (app.weight == -1);
}
static inline double get_estimated_delay(BEST_APP_VERSION& bav) {
if (bav.host_usage.ncudas) {
return g_request->coproc_cuda->estimated_delay;
} else if (bav.host_usage.natis) {
return g_request->coproc_ati->estimated_delay;
} else {
return g_request->cpu_estimated_delay;
}
}
static inline void update_estimated_delay(BEST_APP_VERSION& bav, double dt) {
if (bav.host_usage.ncudas) {
g_request->coproc_cuda->estimated_delay += dt;
} else if (bav.host_usage.natis) {
g_request->coproc_ati->estimated_delay += dt;
} else {
g_request->cpu_estimated_delay += dt;
}
}
// return the delay bound to use for this job/host.
// Actually, return two: optimistic (lower) and pessimistic (higher).
// If the deadline check with the optimistic bound fails,
// try the pessimistic bound.
//
static void get_delay_bound_range(
WORKUNIT& wu,
int res_server_state, int res_priority, double res_report_deadline,
BEST_APP_VERSION& bav,
double& opt, double& pess
) {
if (res_server_state == RESULT_SERVER_STATE_IN_PROGRESS) {
double now = dtime();
if (res_report_deadline < now) {
// if original deadline has passed, return zeros
// This will skip deadline check.
opt = pess = 0;
}
opt = res_report_deadline - now;
pess = wu.delay_bound;
} else {
opt = pess = wu.delay_bound;
// If the workunit needs reliable and is being sent to a reliable host,
// then shorten the delay bound by the percent specified
//
if (config.reliable_on_priority && res_priority >= config.reliable_on_priority && config.reliable_reduced_delay_bound > 0.01
) {
opt = wu.delay_bound*config.reliable_reduced_delay_bound;
double est_wallclock_duration = estimate_duration(wu, bav);
// Check to see how reasonable this reduced time is.
// Increase it to twice the estimated delay bound
// if all the following apply:
//
// 1) Twice the estimate is longer then the reduced delay bound
// 2) Twice the estimate is less then the original delay bound
// 3) Twice the estimate is less then the twice the reduced delay bound
if (est_wallclock_duration*2 > opt
&& est_wallclock_duration*2 < wu.delay_bound
&& est_wallclock_duration*2 < wu.delay_bound*config.reliable_reduced_delay_bound*2
) {
opt = est_wallclock_duration*2;
}
}
}
}
// return 0 if the job, with the given delay bound,
// will complete by its deadline, and won't cause other jobs to miss deadlines.
//
static inline int check_deadline(
WORKUNIT& wu, APP& app, BEST_APP_VERSION& bav
) {
if (config.ignore_delay_bound) return 0;
// skip delay check if host currently doesn't have any work
// and it's not a hard app.
// (i.e. everyone gets one result, no matter how slow they are)
//
if (get_estimated_delay(bav) == 0 && !hard_app(app)) return 0;
// if it's a hard app, don't send it to a host with no credit
//
if (hard_app(app) && g_reply->host.total_credit == 0) {
return INFEASIBLE_CPU;
}
// do EDF simulation if possible; else use cruder approximation
//
if (config.workload_sim && g_request->have_other_results_list) {
double est_dur = estimate_duration(wu, bav);
if (g_reply->wreq.edf_reject_test(est_dur, wu.delay_bound)) {
return INFEASIBLE_WORKLOAD;
}
IP_RESULT candidate("", wu.delay_bound, est_dur);
strcpy(candidate.name, wu.name);
if (check_candidate(candidate, g_wreq->effective_ncpus, g_request->ip_results)) {
// it passed the feasibility test,
// but don't add it to the workload yet;
// wait until we commit to sending it
} else {
g_reply->wreq.edf_reject(est_dur, wu.delay_bound);
g_reply->wreq.speed.set_insufficient(0);
return INFEASIBLE_WORKLOAD;
}
} else {
double ewd = estimate_duration(wu, bav);
if (hard_app(app)) ewd *= 1.3;
double est_completion_delay = get_estimated_delay(bav) + ewd;
double est_report_delay = std::max(
est_completion_delay,
g_request->global_prefs.work_buf_min()
);
double diff = est_report_delay - wu.delay_bound;
if (diff > 0) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%d] deadline miss %d > %d\n",
wu.id, (int)est_report_delay, wu.delay_bound
);
}
g_reply->wreq.speed.set_insufficient(diff);
return INFEASIBLE_CPU;
} else {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%d] meets deadline: %.2f + %.2f < %d\n",
wu.id, get_estimated_delay(bav), ewd, wu.delay_bound
);
}
}
}
return 0;
}
// Fast checks (no DB access) to see if the job can be sent to the host.
// Reasons why not include:
// 1) the host doesn't have enough memory;
// 2) the host doesn't have enough disk space;
// 3) based on CPU speed, resource share and estimated delay,
// the host probably won't get the result done within the delay bound
// 4) app isn't in user's "approved apps" list
//
// If the job is feasible, return 0 and fill in wu.delay_bound
// with the delay bound we've decided to use.
//
int wu_is_infeasible_fast(
WORKUNIT& wu,
int res_server_state, int res_priority, double res_report_deadline,
APP& app, BEST_APP_VERSION& bav
) {
int retval;
// project-specific check
//
if (wu_is_infeasible_custom(wu, app, bav)) {
return INFEASIBLE_CUSTOM;
}
// homogeneous redundancy, quick check
//
if (app_hr_type(app)) {
if (hr_unknown_platform_type(g_reply->host, app_hr_type(app))) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] [WU#%d %s] host is of unknown class in HR type %d\n",
g_reply->host.id, wu.id, wu.name, app_hr_type(app)
);
}
return INFEASIBLE_HR;
}
if (already_sent_to_different_platform_quick(wu, app)) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] [WU#%d %s] failed quick HR check: WU is class %d, host is class %d\n",
g_reply->host.id, wu.id, wu.name, wu.hr_class, hr_class(g_request->host, app_hr_type(app))
);
}
return INFEASIBLE_HR;
}
}
if (config.one_result_per_user_per_wu || config.one_result_per_host_per_wu) {
if (wu_already_in_reply(wu)) {
return INFEASIBLE_DUP;
}
}
retval = check_memory(wu);
if (retval) return retval;
retval = check_disk(wu);
if (retval) return retval;
retval = check_bandwidth(wu);
if (retval) return retval;
if (config.non_cpu_intensive) {
return 0;
}
// do deadline check last because EDF sim uses some CPU
//
double opt, pess;
get_delay_bound_range(
wu, res_server_state, res_priority, res_report_deadline, bav, opt, pess
);
wu.delay_bound = (int)opt;
if (opt == 0) {
// this is a resend; skip deadline check
return 0;
}
retval = check_deadline(wu, app, bav);
if (retval && (opt != pess)) {
wu.delay_bound = (int)pess;
retval = check_deadline(wu, app, bav);
}
return retval;
}
// insert "text" right after "after" in the given buffer
//
int insert_after(char* buffer, const char* after, const char* text) {
char* p;
char temp[BLOB_SIZE];
if (strlen(buffer) + strlen(text) > BLOB_SIZE-1) {
log_messages.printf(MSG_CRITICAL,
"insert_after: overflow: %d %d\n", strlen(buffer), strlen(text)
);
return ERR_BUFFER_OVERFLOW;
}
p = strstr(buffer, after);
if (!p) {
log_messages.printf(MSG_CRITICAL,
"insert_after: %s not found in %s\n", after, buffer
);
return ERR_NULL;
}
p += strlen(after);
strcpy(temp, p);
strcpy(p, text);
strcat(p, temp);
return 0;
}
// add elements to WU's xml_doc,
// in preparation for sending it to a client
//
int insert_wu_tags(WORKUNIT& wu, APP& app) {
char buf[BLOB_SIZE];
sprintf(buf,
" <rsc_fpops_est>%f</rsc_fpops_est>\n"
" <rsc_fpops_bound>%f</rsc_fpops_bound>\n"
" <rsc_memory_bound>%f</rsc_memory_bound>\n"
" <rsc_disk_bound>%f</rsc_disk_bound>\n"
" <name>%s</name>\n"
" <app_name>%s</app_name>\n",
wu.rsc_fpops_est,
wu.rsc_fpops_bound,
wu.rsc_memory_bound,
wu.rsc_disk_bound,
wu.name,
app.name
);
return insert_after(wu.xml_doc, "<workunit>\n", buf);
}
// add the given workunit to a reply.
// Add the app and app_version to the reply also.
//
int add_wu_to_reply(
WORKUNIT& wu, SCHEDULER_REPLY& reply, APP* app, BEST_APP_VERSION* bavp
) {
int retval;
WORKUNIT wu2, wu3;
APP_VERSION* avp = bavp->avp;
// add the app, app_version, and workunit to the reply,
// but only if they aren't already there
//
if (avp) {
APP_VERSION av2=*avp, *avp2=&av2;
if (strlen(config.replace_download_url_by_timezone)) {
process_av_timezone(avp, av2);
}
g_reply->insert_app_unique(*app);
av2.bavp = bavp;
g_reply->insert_app_version_unique(*avp2);
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] Sending app_version %s %d %d %s; %.2f GFLOPS\n",
g_reply->host.id, app->name,
avp2->platformid, avp2->version_num, avp2->plan_class,
bavp->host_usage.flops/1e9
);
}
}
// add time estimate to reply
//
wu2 = wu; // make copy since we're going to modify its XML field
retval = insert_wu_tags(wu2, *app);
if (retval) {
log_messages.printf(MSG_CRITICAL, "insert_wu_tags failed %d\n", retval);
return retval;
}
wu3 = wu2;
if (strlen(config.replace_download_url_by_timezone)) {
process_wu_timezone(wu2, wu3);
}
g_reply->insert_workunit_unique(wu3);
// switch to tighter policy for estimating delay
//
return 0;
}
int insert_name_tags(RESULT& result, WORKUNIT const& wu) {
char buf[256];
int retval;
sprintf(buf, "<name>%s</name>\n", result.name);
retval = insert_after(result.xml_doc_in, "<result>\n", buf);
if (retval) return retval;
sprintf(buf, "<wu_name>%s</wu_name>\n", wu.name);
retval = insert_after(result.xml_doc_in, "<result>\n", buf);
if (retval) return retval;
return 0;
}
int insert_deadline_tag(RESULT& result) {
char buf[256];
sprintf(buf, "<report_deadline>%d</report_deadline>\n", result.report_deadline);
int retval = insert_after(result.xml_doc_in, "<result>\n", buf);
if (retval) return retval;
return 0;
}
int update_wu_transition_time(WORKUNIT wu, time_t x) {
DB_WORKUNIT dbwu;
char buf[256];
dbwu.id = wu.id;
// SQL note: can't use min() here
//
sprintf(buf,
"transition_time=if(transition_time<%d, transition_time, %d)",
(int)x, (int)x
);
return dbwu.update_field(buf);
}
// return true iff a result for same WU is already being sent
//
bool wu_already_in_reply(WORKUNIT& wu) {
unsigned int i;
for (i=0; i<g_reply->results.size(); i++) {
if (wu.id == g_reply->results[i].workunitid) {
return true;
}
}
return false;
}
void lock_sema() {
lock_semaphore(sema_key);
}
void unlock_sema() {
unlock_semaphore(sema_key);
}
// return true if additional work is needed,
// and there's disk space left,
// and we haven't exceeded result per RPC limit,
// and we haven't exceeded results per day limit
//
bool work_needed(bool locality_sched) {
if (locality_sched) {
// if we've failed to send a result because of a transient condition,
// return false to preserve invariant
//
if (g_wreq->disk.insufficient || g_wreq->speed.insufficient || g_wreq->mem.insufficient || g_wreq->no_allowed_apps_available) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - locality condition\n"
);
}
return false;
}
}
if (g_reply->host.nresults_today >= g_wreq->max_jobs_per_day) {
g_wreq->daily_result_quota_exceeded = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - daily quota exceeded (%d>=%d)\n",
g_reply->host.nresults_today, g_wreq->max_jobs_per_day
);
}
return false;
}
if (g_wreq->njobs_on_host >= g_wreq->max_jobs_on_host) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] in-progress job limit exceeded; %d >= %d\n",
g_wreq->njobs_on_host, g_wreq->max_jobs_on_host
);
}
g_wreq->max_jobs_on_host_exceeded = true;
return false;
}
if (g_wreq->njobs_on_host_cpu >= g_wreq->max_jobs_on_host_cpu) {
g_wreq->clear_cpu_req();
g_wreq->max_jobs_on_host_cpu_exceeded = true;
}
if (g_wreq->njobs_on_host_gpu >= g_wreq->max_jobs_on_host_gpu) {
g_wreq->clear_gpu_req();
if (g_wreq->effective_ngpus) {
g_wreq->max_jobs_on_host_gpu_exceeded = true;
}
}
if (g_wreq->njobs_sent >= g_wreq->max_jobs_per_rpc) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] stopping work search - njobs %d >= max_jobs_per_rpc %d\n",
g_wreq->njobs_sent, g_wreq->max_jobs_per_rpc
);
}
return false;
}
#if 0
log_messages.printf(MSG_NORMAL,
"work_needed: spec req %d sec to fill %.2f; CPU (%.2f, %.2f) CUDA (%.2f, %.2f) ATI(%.2f, %.2f)\n",
g_wreq->rsc_spec_request,
g_wreq->seconds_to_fill,
g_wreq->cpu_req_secs, g_wreq->cpu_req_instances,
g_wreq->cuda_req_secs, g_wreq->cuda_req_instances,
g_wreq->ati_req_secs, g_wreq->ati_req_instances
);
#endif
if (g_wreq->rsc_spec_request) {
if (g_wreq->need_cpu()) {
return true;
}
if (g_wreq->need_cuda()) {
return true;
}
if (g_wreq->need_ati()) {
return true;
}
} else {
if (g_wreq->seconds_to_fill > 0) {
return true;
}
}
if (config.debug_send) {
log_messages.printf(MSG_NORMAL, "[send] don't need more work\n");
}
return false;
}
int add_result_to_reply(
DB_RESULT& result, WORKUNIT& wu, BEST_APP_VERSION* bavp,
bool locality_scheduling
) {
int retval;
bool resent_result = false;
APP* app = ssp->lookup_app(wu.appid);
retval = add_wu_to_reply(wu, *g_reply, app, bavp);
if (retval) return retval;
// Adjust available disk space.
// In the scheduling locality case,
// reduce the available space by less than the workunit rsc_disk_bound,
// if the host already has the file or the file was not already sent.
//
if (!locality_scheduling || decrement_disk_space_locality(wu)) {
g_wreq->disk_available -= wu.rsc_disk_bound;
}
// update the result in DB
//
result.hostid = g_reply->host.id;
result.userid = g_reply->user.id;
result.sent_time = time(0);
result.report_deadline = result.sent_time + wu.delay_bound;
result.flops_estimate = bavp->host_usage.flops;
if (bavp->avp) {
result.app_version_id = bavp->avp->id;
} else {
result.app_version_id = -1;
}
int old_server_state = result.server_state;
if (result.server_state != RESULT_SERVER_STATE_IN_PROGRESS) {
// We're sending this result for the first time
//
result.server_state = RESULT_SERVER_STATE_IN_PROGRESS;
} else {
// Result was already sent to this host but was lost,
// so we're resending it.
//
resent_result = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [RESULT#%d] [HOST#%d] (resend lost work)\n",
result.id, g_reply->host.id
);
}
}
retval = result.mark_as_sent(old_server_state);
if (retval == ERR_DB_NOT_FOUND) {
log_messages.printf(MSG_CRITICAL,
"[RESULT#%d] [HOST#%d]: CAN'T SEND, already sent to another host\n",
result.id, g_reply->host.id
);
} else if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't update result: %d\n", retval
);
}
if (retval) return retval;
double est_dur = estimate_duration(wu, *bavp);
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[HOST#%d] Sending [RESULT#%d %s] (est. dur. %.2f seconds)\n",
g_reply->host.id, result.id, result.name, est_dur
);
}
retval = update_wu_transition_time(wu, result.report_deadline);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't update WU transition time: %d\n",
retval
);
return retval;
}
// The following overwrites the result's xml_doc field.
// But that's OK cuz we're done with DB updates
//
retval = insert_name_tags(result, wu);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't insert name tags: %d\n",
retval
);
return retval;
}
retval = insert_deadline_tag(result);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"add_result_to_reply: can't insert deadline tag: %d\n", retval
);
return retval;
}
result.bavp = bavp;
g_reply->insert_result(result);
if (g_wreq->rsc_spec_request) {
if (bavp->host_usage.ncudas) {
g_wreq->cuda_req_secs -= est_dur;
g_wreq->cuda_req_instances -= bavp->host_usage.ncudas;
} else if (bavp->host_usage.natis) {
g_wreq->ati_req_secs -= est_dur;
g_wreq->ati_req_instances -= bavp->host_usage.natis;
} else {
g_wreq->cpu_req_secs -= est_dur;
g_wreq->cpu_req_instances -= bavp->host_usage.avg_ncpus;
}
} else {
g_wreq->seconds_to_fill -= est_dur;
}
update_estimated_delay(*bavp, est_dur);
g_wreq->njobs_sent++;
g_wreq->njobs_on_host++;
if (bavp->host_usage.ncudas > 0) {
g_wreq->njobs_on_host_gpu++;
} else if (bavp->host_usage.natis > 0) {
g_wreq->njobs_on_host_gpu++;
} else {
g_wreq->njobs_on_host_cpu++;
}
if (!resent_result) g_reply->host.nresults_today++;
// add this result to workload for simulation
//
if (config.workload_sim && g_request->have_other_results_list) {
IP_RESULT ipr ("", time(0)+wu.delay_bound, est_dur);
g_request->ip_results.push_back(ipr);
}
// mark job as done if debugging flag is set;
// this is used by sched_driver.C (performance testing)
//
if (mark_jobs_done) {
DB_WORKUNIT dbwu;
char buf[256];
sprintf(buf,
"server_state=%d outcome=%d",
RESULT_SERVER_STATE_OVER, RESULT_OUTCOME_SUCCESS
);
result.update_field(buf);
dbwu.id = wu.id;
sprintf(buf, "transition_time=%ld", time(0));
dbwu.update_field(buf);
}
// If we're sending an unreplicated job to an untrusted host,
// mark it as replicated
//
if (wu.target_nresults == 1 && app->target_nresults > 1) {
if (g_wreq->trust) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%d] sending to trusted host, not replicating\n", wu.id
);
}
} else {
DB_WORKUNIT dbwu;
char buf[256];
sprintf(buf,
"target_nresults=%d, min_quorum=%d, transition_time=%ld",
app->target_nresults, app->target_nresults, time(0)
);
dbwu.id = wu.id;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [WU#%d] sending to untrusted host, replicating\n", wu.id
);
}
retval = dbwu.update_field(buf);
if (retval) {
log_messages.printf(MSG_CRITICAL,
"WU update failed: %d", retval
);
}
}
}
return 0;
}
// send messages to user about why jobs were or weren't sent
//
static void explain_to_user() {
char helpful[512];
unsigned int i;
int j;
// If work was sent from apps the user did not select, explain.
// NOTE: this will have to be done differently with matchmaker scheduling
//
if (!config.locality_scheduling && !config.matchmaker) {
if (g_wreq->njobs_sent && !g_wreq->user_apps_only) {
g_reply->insert_message(
"No work can be sent for the applications you have selected",
"high"
);
// Inform the user about applications with no work
//
for (i=0; i<g_wreq->preferred_apps.size(); i++) {
if (!g_wreq->preferred_apps[i].work_available) {
APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid);
// don't write message if the app is deprecated
//
if (app) {
char explanation[256];
sprintf(explanation,
"No work is available for %s",
find_user_friendly_name(g_wreq->preferred_apps[i].appid)
);
g_reply->insert_message( explanation, "high");
}
}
}
// Tell the user about applications they didn't qualify for
//
for (j=0; j<preferred_app_message_index; j++){
g_reply->insert_message(g_wreq->no_work_messages.at(j));
}
g_reply->insert_message(
"You have selected to receive work from other applications if no work is available for the applications you selected",
"high"
);
g_reply->insert_message(
"Sending work from other applications", "high"
);
}
}
// if client asked for work and we're not sending any, explain why
//
if (g_wreq->njobs_sent == 0) {
g_reply->set_delay(DELAY_NO_WORK_TEMP);
g_reply->insert_message("No work sent", "high");
// Tell the user about applications with no work
//
for (i=0; i<g_wreq->preferred_apps.size(); i++) {
if (!g_wreq->preferred_apps[i].work_available) {
APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid);
// don't write message if the app is deprecated
if (app != NULL) {
char explanation[256];
sprintf(explanation, "No work is available for %s",
find_user_friendly_name(g_wreq->preferred_apps[i].appid)
);
g_reply->insert_message(explanation, "high");
}
}
}
// Tell the user about applications they didn't qualify for
//
for (i=0; i<g_wreq->no_work_messages.size(); i++){
g_reply->insert_message(g_wreq->no_work_messages.at(i));
}
if (g_wreq->no_allowed_apps_available) {
g_reply->insert_message(
"No work available for the applications you have selected. Please check your settings on the web site.",
"high"
);
}
if (g_wreq->speed.insufficient) {
if (g_request->core_client_version>419) {
sprintf(helpful,
"(won't finish in time) "
"BOINC runs %.1f%% of time, computation enabled %.1f%% of that",
100.0*g_reply->host.on_frac, 100.0*g_reply->host.active_frac
);
} else {
sprintf(helpful,
"(won't finish in time) "
"Computer available %.1f%% of time",
100.0*g_reply->host.on_frac
);
}
g_reply->insert_message(helpful, "high");
}
if (g_wreq->hr_reject_temp) {
g_reply->insert_message(
"(there was work but it was committed to other platforms)",
"high"
);
}
if (g_wreq->hr_reject_perm) {
g_reply->insert_message(
"(your platform is not supported by this project)",
"high"
);
}
if (g_wreq->outdated_client) {
g_reply->insert_message(
" (your BOINC client is old - please install current version)",
"high"
);
g_reply->set_delay(DELAY_NO_WORK_PERM);
log_messages.printf(MSG_NORMAL,
"Not sending work because client is outdated\n"
);
}
if (g_wreq->excessive_work_buf) {
g_reply->insert_message(
"(Your network connection interval is longer than WU deadline)",
"high"
);
}
if (g_wreq->no_cuda_prefs) {
g_reply->insert_message(
"Jobs for NVIDIA GPU are available, but your preferences are set to not accept them",
"low"
);
}
if (g_wreq->no_ati_prefs) {
g_reply->insert_message(
"Jobs for ATI GPU are available, but your preferences are set to not accept them",
"low"
);
}
if (g_wreq->no_cpu_prefs) {
g_reply->insert_message(
"Jobs for CPU are available, but your preferences are set to not accept them",
"low"
);
}
if (g_wreq->daily_result_quota_exceeded) {
struct tm *rpc_time_tm;
int delay_time;
sprintf(helpful, "(reached daily quota of %d tasks)",
g_wreq->max_jobs_per_day
);
g_reply->insert_message(helpful, "high");
log_messages.printf(MSG_NORMAL,
"Daily result quota %d exceeded for host %d\n",
g_wreq->max_jobs_per_day, g_reply->host.id
);
// set delay so host won't return until a random time in
// the first hour of the next day.
// This is to prevent a lot of hosts from flooding the scheduler
// with requests at the same time of day.
//
time_t t = g_reply->host.rpc_time;
rpc_time_tm = localtime(&t);
delay_time = (23 - rpc_time_tm->tm_hour) * 3600
+ (59 - rpc_time_tm->tm_min) * 60
+ (60 - rpc_time_tm->tm_sec)
+ (int)(3600*(double)rand()/(double)RAND_MAX);
g_reply->set_delay(delay_time);
}
if (g_wreq->max_jobs_on_host_exceeded) {
sprintf(helpful, "(reached limit of %d tasks in progress)",
g_wreq->max_jobs_on_host
);
g_reply->insert_message(helpful, "high");
g_reply->set_delay(DELAY_NO_WORK_CACHE);
log_messages.printf(MSG_NORMAL,
"host %d already has %d job(s) in progress\n",
g_reply->host.id, g_wreq->njobs_on_host
);
}
if (g_wreq->max_jobs_on_host_cpu_exceeded) {
sprintf(helpful, "(reached limit of %d CPU tasks in progress)",
g_wreq->max_jobs_on_host_cpu
);
g_reply->insert_message(helpful, "high");
g_reply->set_delay(DELAY_NO_WORK_CACHE);
log_messages.printf(MSG_NORMAL,
"host %d already has %d CPU job(s) in progress\n",
g_reply->host.id, g_wreq->njobs_on_host_cpu
);
}
if (g_wreq->max_jobs_on_host_gpu_exceeded) {
sprintf(helpful, "(reached limit of %d GPU tasks in progress)",
g_wreq->max_jobs_on_host_gpu
);
g_reply->insert_message(helpful, "high");
g_reply->set_delay(DELAY_NO_WORK_CACHE);
log_messages.printf(MSG_NORMAL,
"host %d already has %d GPU job(s) in progress\n",
g_reply->host.id, g_wreq->njobs_on_host_gpu
);
}
}
}
#define ER_MAX 0.05
// decide whether to unreplicated jobs to this host
//
void set_trust() {
g_wreq->trust = false;
if (g_reply->host.error_rate > ER_MAX) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] set_trust: error rate %f > %f, don't trust\n",
g_reply->host.error_rate, ER_MAX
);
}
return;
}
double x = sqrt(g_reply->host.error_rate/ER_MAX);
if (drand() > x) g_wreq->trust = true;
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] set_trust: random choice for error rate %f: %s\n",
g_reply->host.error_rate, g_wreq->trust?"yes":"no"
);
}
}
static double clamp_req_sec(double x) {
if (x < MIN_REQ_SECS) return MIN_REQ_SECS;
if (x > MAX_REQ_SECS) return MAX_REQ_SECS;
return x;
}
// decipher request type, fill in WORK_REQ
//
void send_work_setup() {
unsigned int i;
g_wreq->disk_available = max_allowable_disk();
get_mem_sizes();
get_running_frac();
get_dcf();
g_wreq->get_job_limits();
g_wreq->seconds_to_fill = clamp_req_sec(g_request->work_req_seconds);
g_wreq->cpu_req_secs = clamp_req_sec(g_request->cpu_req_secs);
g_wreq->cpu_req_instances = g_request->cpu_req_instances;
g_wreq->anonymous_platform = anonymous(g_request->platforms.list[0]);
if (g_request->coproc_cuda) {
g_wreq->cuda_req_secs = clamp_req_sec(g_request->coproc_cuda->req_secs);
g_wreq->cuda_req_instances = g_request->coproc_cuda->req_instances;
if (g_request->coproc_cuda->estimated_delay < 0) {
g_request->coproc_cuda->estimated_delay = g_request->cpu_estimated_delay;
}
}
if (g_request->coproc_ati) {
g_wreq->ati_req_secs = clamp_req_sec(g_request->coproc_ati->req_secs);
g_wreq->ati_req_instances = g_request->coproc_ati->req_instances;
if (g_request->coproc_ati->estimated_delay < 0) {
g_request->coproc_ati->estimated_delay = g_request->cpu_estimated_delay;
}
}
if (g_wreq->cpu_req_secs || g_wreq->cuda_req_secs || g_wreq->ati_req_secs) {
g_wreq->rsc_spec_request = true;
} else {
g_wreq->rsc_spec_request = false;
}
// print details of request to log
//
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] %s matchmaker scheduling; %s EDF sim\n",
config.matchmaker?"Using":"Not using",
config.workload_sim?"Using":"Not using"
);
log_messages.printf(MSG_NORMAL,
"[send] CPU: req %.2f sec, %.2f instances; est delay %.2f\n",
g_wreq->cpu_req_secs, g_wreq->cpu_req_instances,
g_request->cpu_estimated_delay
);
if (g_request->coproc_cuda) {
log_messages.printf(MSG_NORMAL,
"[send] CUDA: req %.2f sec, %.2f instances; est delay %.2f\n",
g_wreq->cuda_req_secs, g_wreq->cuda_req_instances,
g_request->coproc_cuda->estimated_delay
);
}
if (g_request->coproc_ati) {
log_messages.printf(MSG_NORMAL,
"[send] ATI: req %.2f sec, %.2f instances; est delay %.2f\n",
g_wreq->ati_req_secs, g_wreq->ati_req_instances,
g_request->coproc_ati->estimated_delay
);
}
log_messages.printf(MSG_NORMAL,
"[send] work_req_seconds: %.2f secs\n",
g_wreq->seconds_to_fill
);
log_messages.printf(MSG_NORMAL,
"[send] available disk %.2f GB, work_buf_min %d\n",
g_wreq->disk_available/GIGA,
(int)g_request->global_prefs.work_buf_min()
);
log_messages.printf(MSG_NORMAL,
"[send] active_frac %f on_frac %f DCF %f\n",
g_reply->host.active_frac,
g_reply->host.on_frac,
g_reply->host.duration_correction_factor
);
if (g_wreq->anonymous_platform) {
log_messages.printf(MSG_NORMAL,
"Anonymous platform app versions:\n"
);
for (i=0; i<g_request->client_app_versions.size(); i++) {
CLIENT_APP_VERSION& cav = g_request->client_app_versions[i];
log_messages.printf(MSG_NORMAL,
" app: %s ver: %d\n",
cav.app_name, cav.version_num
);
}
}
}
}
void send_work() {
if (!g_wreq->rsc_spec_request && g_wreq->seconds_to_fill == 0) {
return;
}
if (all_apps_use_hr && hr_unknown_platform(g_request->host)) {
log_messages.printf(MSG_NORMAL,
"Not sending work because unknown HR class\n"
);
g_wreq->hr_reject_perm = true;
return;
}
get_host_info();
get_prefs_info();
set_trust();
if (config.enable_assignment) {
if (send_assigned_jobs()) {
if (config.debug_assignment) {
log_messages.printf(MSG_NORMAL,
"[assign] [HOST#%d] sent assigned jobs\n", g_reply->host.id
);
}
return;
}
}
if (config.workload_sim && g_request->have_other_results_list) {
init_ip_results(
g_request->global_prefs.work_buf_min(),
g_wreq->effective_ncpus, g_request->ip_results
);
}
if (config.locality_scheduler_fraction > 0) {
if (drand() < config.locality_scheduler_fraction) {
if (config.debug_locality)
log_messages.printf(MSG_NORMAL, "[mixed] sending locality work first\n");
send_work_locality();
if (config.debug_locality)
log_messages.printf(MSG_NORMAL, "[mixed] sending non-locality work second\n");
send_work_old();
} else {
if (config.debug_locality)
log_messages.printf(MSG_NORMAL, "[mixed] sending non-locality work first\n");
send_work_old();
if (config.debug_locality)
log_messages.printf(MSG_NORMAL, "[mixed] sending locality work second\n");
send_work_locality();
}
} else if (config.locality_scheduling) {
send_work_locality();
} else if (config.matchmaker) {
send_work_matchmaker();
} else {
send_work_old();
}
explain_to_user();
}
const char *BOINC_RCSID_32dcd335e7 = "$Id$";