// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // scheduler code related to sending jobs. // NOTE: there should be nothing here specific to particular // scheduling policies (array scan, matchmaking, locality) #include "config.h" #include #include #include #include #include #include #include #include #include #include "error_numbers.h" #include "parse.h" #include "util.h" #include "str_util.h" #include "synch.h" #include "sched_types.h" #include "sched_shmem.h" #include "sched_config.h" #include "sched_util.h" #include "sched_main.h" #include "sched_array.h" #include "sched_msgs.h" #include "sched_hr.h" #include "hr.h" #include "sched_locality.h" #include "sched_timezone.h" #include "sched_assign.h" #include "sched_customize.h" #include "sched_send.h" #ifdef _USING_FCGI_ #include "boinc_fcgi.h" #endif // if host sends us an impossible RAM size, use this instead // const double DEFAULT_RAM_SIZE = 64000000; void send_work_matchmaker(); int preferred_app_message_index=0; const char* infeasible_string(int code) { switch (code) { case INFEASIBLE_MEM: return "Not enough memory"; case INFEASIBLE_DISK: return "Not enough disk"; case INFEASIBLE_CPU: return "CPU too slow"; case INFEASIBLE_APP_SETTING: return "App not selected"; case INFEASIBLE_WORKLOAD: return "Existing workload"; case INFEASIBLE_DUP: return "Already in reply"; case INFEASIBLE_HR: return "Homogeneous redundancy"; case INFEASIBLE_BANDWIDTH: return "Download bandwidth too low"; } return "Unknown"; } const double MIN_REQ_SECS = 0; const double MAX_REQ_SECS = (28*SECONDS_IN_DAY); const int MAX_CUDA_DEVS = 8; // don't believe clients who claim they have more CUDA devices than this // get limits on #jobs per day and per RPC, on in progress // void WORK_REQ::get_job_limits() { int n; n = g_reply->host.p_ncpus; if (g_request->global_prefs.max_ncpus_pct && g_request->global_prefs.max_ncpus_pct < 100) { n = (int)((n*g_request->global_prefs.max_ncpus_pct)/100.); } if (n > config.max_ncpus) n = config.max_ncpus; if (n < 1) n = 1; effective_ncpus = n; n = 0; COPROC* cp = g_request->coprocs.lookup("CUDA"); if (cp) { n = cp->count; if (n > MAX_CUDA_DEVS) n = MAX_CUDA_DEVS; } effective_ngpus = n; int mult = effective_ncpus + config.gpu_multiplier * effective_ngpus; if (config.non_cpu_intensive) { mult = 1; effective_ncpus = 1; if (effective_ngpus) effective_ngpus = 1; } if (config.max_wus_to_send) { g_wreq->max_jobs_per_rpc = mult * config.max_wus_to_send; } else { g_wreq->max_jobs_per_rpc = 999999; } if (config.daily_result_quota) { if (g_reply->host.max_results_day == 0 || g_reply->host.max_results_day>config.daily_result_quota) { g_reply->host.max_results_day = config.daily_result_quota; } g_wreq->max_jobs_per_day = mult * g_reply->host.max_results_day; } else { g_wreq->max_jobs_per_day = 999999; } if (config.max_wus_in_progress) { g_wreq->max_jobs_on_host_cpu = config.max_wus_in_progress * effective_ncpus; if (config.max_wus_in_progress_gpu) { g_wreq->max_jobs_on_host_gpu = config.max_wus_in_progress_gpu * effective_ngpus; g_wreq->max_jobs_on_host = g_wreq->max_jobs_on_host_cpu + g_wreq->max_jobs_on_host_gpu; } else { g_wreq->max_jobs_on_host_gpu = 999999; g_wreq->max_jobs_on_host = g_wreq->max_jobs_on_host_cpu; } } else { g_wreq->max_jobs_on_host_cpu = 999999; g_wreq->max_jobs_on_host = 999999; if (config.max_wus_in_progress_gpu) { g_wreq->max_jobs_on_host_gpu = config.max_wus_in_progress_gpu * effective_ngpus; } else { g_wreq->max_jobs_on_host_gpu = 999999; } } if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] effective_ncpus %d max_jobs_on_host_cpu %d max_jobs_on_host %d\n", effective_ncpus, g_wreq->max_jobs_on_host_cpu, g_wreq->max_jobs_on_host ); log_messages.printf(MSG_NORMAL, "[send] effective_ngpus %d max_jobs_on_host_gpu %d\n", effective_ngpus, g_wreq->max_jobs_on_host_gpu ); } } static const char* find_user_friendly_name(int appid) { APP* app = ssp->lookup_app(appid); if (app) return app->user_friendly_name; return "deprecated application"; } // Compute the max additional disk usage we can impose on the host. // Depending on the client version, it can either send us // - d_total and d_free (pre 4 oct 2005) // - the above plus d_boinc_used_total and d_boinc_used_project // double max_allowable_disk() { HOST host = g_request->host; GLOBAL_PREFS prefs = g_request->global_prefs; double x1, x2, x3, x; // defaults are from config.xml // if not there these are used: // -default_max_used_gb= 100 // -default_max_used_pct = 50 // -default_min_free_gb = .001 // if (prefs.disk_max_used_gb == 0) { prefs.disk_max_used_gb = config.default_disk_max_used_gb; } if (prefs.disk_max_used_pct == 0) { prefs.disk_max_used_pct = config.default_disk_max_used_pct; } if (prefs.disk_min_free_gb < config.default_disk_min_free_gb) { prefs.disk_min_free_gb = config.default_disk_min_free_gb; } // no defaults for total/free disk space (host.d_total, d_free) // if they're zero, client will get no work. // if (host.d_boinc_used_total) { // The post 4 oct 2005 case. // Compute the max allowable additional disk usage based on prefs // x1 = prefs.disk_max_used_gb*GIGA - host.d_boinc_used_total; x2 = host.d_total*prefs.disk_max_used_pct/100. - host.d_boinc_used_total; x3 = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative x = std::min(x1, std::min(x2, x3)); // see which bound is the most stringent // if (x==x1) { g_reply->disk_limits.max_used = x; } else if (x==x2) { g_reply->disk_limits.max_frac = x; } else { g_reply->disk_limits.min_free = x; } } else { // here we don't know how much space BOINC is using. // so we're kinda screwed. // All we can do is assume that BOINC is using zero space. // We can't honor the max_used for max_used_pct preferences. // We can only honor the min_free pref. // x = host.d_free - prefs.disk_min_free_gb*GIGA; // may be negative g_reply->disk_limits.min_free = x; x1 = x2 = x3 = 0; } if (x < 0) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] No disk space available: disk_max_used_gb %.2fGB disk_max_used_pct %.2f disk_min_free_gb %.2fGB\n", prefs.disk_max_used_gb/GIGA, prefs.disk_max_used_pct, prefs.disk_min_free_gb/GIGA ); log_messages.printf(MSG_NORMAL, "[send] No disk space available: host.d_total %.2fGB host.d_free %.2fGB host.d_boinc_used_total %.2fGB\n", host.d_total/GIGA, host.d_free/GIGA, host.d_boinc_used_total/GIGA ); log_messages.printf(MSG_NORMAL, "[send] No disk space available: x1 %.2fGB x2 %.2fGB x3 %.2fGB x %.2fGB\n", x1/GIGA, x2/GIGA, x3/GIGA, x/GIGA ); } g_wreq->disk.set_insufficient(-x); x = 0; } return x; } static double estimate_duration_unscaled(WORKUNIT& wu, BEST_APP_VERSION& bav) { double rsc_fpops_est = wu.rsc_fpops_est; if (rsc_fpops_est <= 0) rsc_fpops_est = 1e12; return rsc_fpops_est/bav.host_usage.flops; } static inline void get_running_frac() { double rf; if (g_request->core_client_version<=419) { rf = g_reply->host.on_frac; } else { rf = g_reply->host.active_frac * g_reply->host.on_frac; } // clamp running_frac and DCF to a reasonable range // if (rf > 1) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "running_frac=%f; setting to 1\n", rf); } rf = 1; } else if (rf < .1) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "running_frac=%f; setting to 0.1\n", rf); } rf = .1; } g_wreq->running_frac = rf; } static inline void get_dcf() { double dcf = g_reply->host.duration_correction_factor; if (dcf > 10) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] DCF=%f; setting to 10\n", dcf ); } dcf = 10; } else if (dcf < 0.1) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] DCF=%f; setting to 0.1\n", dcf ); } dcf = 0.1; } g_wreq->dcf = dcf; } // estimate the amount of real time to complete this WU, // taking into account active_frac etc. // Note: don't factor in resource_share_fraction. // The core client no longer necessarily does round-robin // across all projects. // double estimate_duration(WORKUNIT& wu, BEST_APP_VERSION& bav) { double edu = estimate_duration_unscaled(wu, bav); double ed = edu/g_wreq->running_frac; if (!config.ignore_dcf) { ed *= g_wreq->dcf; } if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] est. duration for WU %d: unscaled %.2f scaled %.2f\n", wu.id, edu, ed ); } return ed; } static void get_prefs_info() { char buf[8096]; std::string str; unsigned int pos = 0; int temp_int; bool flag; extract_venue(g_reply->user.project_prefs, g_reply->host.venue, buf); str = buf; // scan user's project prefs for elements of the form N, // indicating the apps they want to run. // g_wreq->preferred_apps.clear(); while (parse_int(str.substr(pos,str.length()-pos).c_str(), "", temp_int)) { APP_INFO ai; ai.appid = temp_int; ai.work_available = false; g_wreq->preferred_apps.push_back(ai); pos = str.find("", pos) + 1; } if (parse_bool(buf,"allow_non_preferred_apps", flag)) { g_wreq->allow_non_preferred_apps = flag; } if (parse_bool(buf,"allow_beta_work", flag)) { g_wreq->allow_beta_work = flag; } if (parse_bool(buf,"no_gpus", flag)) { // deprecated, but need to handle if (flag) { g_wreq->no_cuda = true; g_wreq->no_ati = true; } } if (parse_bool(buf,"no_cpu", flag)) { g_wreq->no_cpu = flag; } if (parse_bool(buf,"no_cuda", flag)) { g_wreq->no_cuda = flag; } if (parse_bool(buf,"no_ati", flag)) { g_wreq->no_ati = flag; } } // Find or compute various info about the host; // this info affects which jobs are sent to the host. // static void get_host_info() { double expavg_credit = g_reply->host.expavg_credit; double expavg_time = g_reply->host.expavg_time; update_average(0, 0, CREDIT_HALF_LIFE, expavg_credit, expavg_time); // Decide whether or not this computer is 'reliable' // A computer is reliable if the following conditions are true // (for those that are set in the config file) // 1) The host average turnaround is less than the config // max average turnaround // 2) The host error rate is less then the config max error rate // 3) The host results per day is equal to the config file value // Platforms other than Windows, Linux and Intel Macs need a // larger set of computers to be marked reliable // double multiplier = 1.0; if (strstr(g_reply->host.os_name,"Windows") || strstr(g_reply->host.os_name,"Linux") || (strstr(g_reply->host.os_name,"Darwin") && !(strstr(g_reply->host.p_vendor,"Power Macintosh")) )) { multiplier = 1.0; } else { multiplier = 1.8; } if (g_reply->host.avg_turnaround > 0 && config.reliable_max_avg_turnaround) { if (g_reply->host.avg_turnaround > config.reliable_max_avg_turnaround*multiplier) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] not reliable; avg_turn_hrs: %.3f\n", g_reply->host.id, g_reply->host.avg_turnaround/3600 ); } g_wreq->reliable = false; return; } } if (config.reliable_max_error_rate) { if (g_reply->host.error_rate > config.reliable_max_error_rate*multiplier) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] not reliable; error rate: %.6f\n", g_reply->host.id, g_reply->host.error_rate ); } g_wreq->reliable = false; return; } } if (config.daily_result_quota) { if (g_reply->host.max_results_day < config.daily_result_quota) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] not reliable; max_result_day %d\n", g_reply->host.id, g_reply->host.max_results_day ); } g_wreq->reliable = false; return; } } g_wreq->reliable = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] is reliable\n", g_reply->host.id ); } } // Return true if the user has set application preferences, // and this job is not for a selected app // bool app_not_selected(WORKUNIT& wu) { unsigned int i; if (g_wreq->preferred_apps.size() == 0) return false; for (i=0; ipreferred_apps.size(); i++) { if (wu.appid == g_wreq->preferred_apps[i].appid) { g_wreq->preferred_apps[i].work_available = true; return false; } } return true; } // see how much RAM we can use on this machine // static inline void get_mem_sizes() { g_wreq->ram = g_reply->host.m_nbytes; if (g_wreq->ram <= 0) g_wreq->ram = DEFAULT_RAM_SIZE; g_wreq->usable_ram = g_wreq->ram; double busy_frac = g_request->global_prefs.ram_max_used_busy_frac; double idle_frac = g_request->global_prefs.ram_max_used_idle_frac; double frac = 1; if (busy_frac>0 && idle_frac>0) { frac = std::max(busy_frac, idle_frac); if (frac > 1) frac = 1; g_wreq->usable_ram *= frac; } } static inline int check_memory(WORKUNIT& wu) { double diff = wu.rsc_memory_bound - g_wreq->usable_ram; if (diff > 0) { char message[256]; sprintf(message, "%s needs %0.2f MB RAM but only %0.2f MB is available for use.", find_user_friendly_name(wu.appid), wu.rsc_memory_bound/MEGA, g_wreq->usable_ram/MEGA ); add_no_work_message(message); if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%d %s] needs %0.2fMB RAM; [HOST#%d] has %0.2fMB, %0.2fMB usable\n", wu.id, wu.name, wu.rsc_memory_bound/MEGA, g_reply->host.id, g_wreq->ram/MEGA, g_wreq->usable_ram/MEGA ); } g_wreq->mem.set_insufficient(wu.rsc_memory_bound); g_reply->set_delay(DELAY_NO_WORK_TEMP); return INFEASIBLE_MEM; } return 0; } static inline int check_disk(WORKUNIT& wu) { double diff = wu.rsc_disk_bound - g_wreq->disk_available; if (diff > 0) { char message[256]; sprintf(message, "%s needs %0.2fMB more disk space. You currently have %0.2f MB available and it needs %0.2f MB.", find_user_friendly_name(wu.appid), diff/MEGA, g_wreq->disk_available/MEGA, wu.rsc_disk_bound/MEGA ); add_no_work_message(message); g_wreq->disk.set_insufficient(diff); return INFEASIBLE_DISK; } return 0; } static inline int check_bandwidth(WORKUNIT& wu) { if (wu.rsc_bandwidth_bound == 0) return 0; // if n_bwdown is zero, the host has never downloaded anything, // so skip this check // if (g_reply->host.n_bwdown == 0) return 0; double diff = wu.rsc_bandwidth_bound - g_reply->host.n_bwdown; if (diff > 0) { char message[256]; sprintf(message, "%s requires %0.2f KB/sec download bandwidth. Your computer has been measured at %0.2f KB/sec.", find_user_friendly_name(wu.appid), wu.rsc_bandwidth_bound/KILO, g_reply->host.n_bwdown/KILO ); add_no_work_message(message); g_wreq->bandwidth.set_insufficient(diff); return INFEASIBLE_BANDWIDTH; } return 0; } // Determine if the app is "hard", // and we should send it only to high-end hosts. // Currently this is specified by setting weight=-1; // this is a kludge for SETI@home/Astropulse. // static inline bool hard_app(APP& app) { return (app.weight == -1); } static inline double get_estimated_delay(BEST_APP_VERSION& bav) { if (bav.host_usage.ncudas) { return g_request->coproc_cuda->estimated_delay; } else if (bav.host_usage.natis) { return g_request->coproc_ati->estimated_delay; } else { return g_request->cpu_estimated_delay; } } static inline void update_estimated_delay(BEST_APP_VERSION& bav, double dt) { if (bav.host_usage.ncudas) { g_request->coproc_cuda->estimated_delay += dt; } else if (bav.host_usage.natis) { g_request->coproc_ati->estimated_delay += dt; } else { g_request->cpu_estimated_delay += dt; } } // return the delay bound to use for this job/host. // Actually, return two: optimistic (lower) and pessimistic (higher). // If the deadline check with the optimistic bound fails, // try the pessimistic bound. // static void get_delay_bound_range( WORKUNIT& wu, int res_server_state, int res_priority, double res_report_deadline, BEST_APP_VERSION& bav, double& opt, double& pess ) { if (res_server_state == RESULT_SERVER_STATE_IN_PROGRESS) { double now = dtime(); if (res_report_deadline < now) { // if original deadline has passed, return zeros // This will skip deadline check. opt = pess = 0; } opt = res_report_deadline - now; pess = wu.delay_bound; } else { opt = pess = wu.delay_bound; // If the workunit needs reliable and is being sent to a reliable host, // then shorten the delay bound by the percent specified // if (config.reliable_on_priority && res_priority >= config.reliable_on_priority && config.reliable_reduced_delay_bound > 0.01 ) { opt = wu.delay_bound*config.reliable_reduced_delay_bound; double est_wallclock_duration = estimate_duration(wu, bav); // Check to see how reasonable this reduced time is. // Increase it to twice the estimated delay bound // if all the following apply: // // 1) Twice the estimate is longer then the reduced delay bound // 2) Twice the estimate is less then the original delay bound // 3) Twice the estimate is less then the twice the reduced delay bound if (est_wallclock_duration*2 > opt && est_wallclock_duration*2 < wu.delay_bound && est_wallclock_duration*2 < wu.delay_bound*config.reliable_reduced_delay_bound*2 ) { opt = est_wallclock_duration*2; } } } } // return 0 if the job, with the given delay bound, // will complete by its deadline, and won't cause other jobs to miss deadlines. // static inline int check_deadline( WORKUNIT& wu, APP& app, BEST_APP_VERSION& bav ) { if (config.ignore_delay_bound) return 0; // skip delay check if host currently doesn't have any work // and it's not a hard app. // (i.e. everyone gets one result, no matter how slow they are) // if (get_estimated_delay(bav) == 0 && !hard_app(app)) return 0; // if it's a hard app, don't send it to a host with no credit // if (hard_app(app) && g_reply->host.total_credit == 0) { return INFEASIBLE_CPU; } // do EDF simulation if possible; else use cruder approximation // if (config.workload_sim && g_request->have_other_results_list) { double est_dur = estimate_duration(wu, bav); if (g_reply->wreq.edf_reject_test(est_dur, wu.delay_bound)) { return INFEASIBLE_WORKLOAD; } IP_RESULT candidate("", wu.delay_bound, est_dur); strcpy(candidate.name, wu.name); if (check_candidate(candidate, g_wreq->effective_ncpus, g_request->ip_results)) { // it passed the feasibility test, // but don't add it to the workload yet; // wait until we commit to sending it } else { g_reply->wreq.edf_reject(est_dur, wu.delay_bound); g_reply->wreq.speed.set_insufficient(0); return INFEASIBLE_WORKLOAD; } } else { double ewd = estimate_duration(wu, bav); if (hard_app(app)) ewd *= 1.3; double est_completion_delay = get_estimated_delay(bav) + ewd; double est_report_delay = std::max( est_completion_delay, g_request->global_prefs.work_buf_min() ); double diff = est_report_delay - wu.delay_bound; if (diff > 0) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%d] deadline miss %d > %d\n", wu.id, (int)est_report_delay, wu.delay_bound ); } g_reply->wreq.speed.set_insufficient(diff); return INFEASIBLE_CPU; } else { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%d] meets deadline: %.2f + %.2f < %d\n", wu.id, get_estimated_delay(bav), ewd, wu.delay_bound ); } } } return 0; } // Fast checks (no DB access) to see if the job can be sent to the host. // Reasons why not include: // 1) the host doesn't have enough memory; // 2) the host doesn't have enough disk space; // 3) based on CPU speed, resource share and estimated delay, // the host probably won't get the result done within the delay bound // 4) app isn't in user's "approved apps" list // // If the job is feasible, return 0 and fill in wu.delay_bound // with the delay bound we've decided to use. // int wu_is_infeasible_fast( WORKUNIT& wu, int res_server_state, int res_priority, double res_report_deadline, APP& app, BEST_APP_VERSION& bav ) { int retval; // project-specific check // if (wu_is_infeasible_custom(wu, app, bav)) { return INFEASIBLE_CUSTOM; } // homogeneous redundancy, quick check // if (app_hr_type(app)) { if (hr_unknown_platform_type(g_reply->host, app_hr_type(app))) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] [WU#%d %s] host is of unknown class in HR type %d\n", g_reply->host.id, wu.id, wu.name, app_hr_type(app) ); } return INFEASIBLE_HR; } if (already_sent_to_different_platform_quick(wu, app)) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] [WU#%d %s] failed quick HR check: WU is class %d, host is class %d\n", g_reply->host.id, wu.id, wu.name, wu.hr_class, hr_class(g_request->host, app_hr_type(app)) ); } return INFEASIBLE_HR; } } if (config.one_result_per_user_per_wu || config.one_result_per_host_per_wu) { if (wu_already_in_reply(wu)) { return INFEASIBLE_DUP; } } retval = check_memory(wu); if (retval) return retval; retval = check_disk(wu); if (retval) return retval; retval = check_bandwidth(wu); if (retval) return retval; if (config.non_cpu_intensive) { return 0; } // do deadline check last because EDF sim uses some CPU // double opt, pess; get_delay_bound_range( wu, res_server_state, res_priority, res_report_deadline, bav, opt, pess ); wu.delay_bound = (int)opt; if (opt == 0) { // this is a resend; skip deadline check return 0; } retval = check_deadline(wu, app, bav); if (retval && (opt != pess)) { wu.delay_bound = (int)pess; retval = check_deadline(wu, app, bav); } return retval; } // insert "text" right after "after" in the given buffer // int insert_after(char* buffer, const char* after, const char* text) { char* p; char temp[BLOB_SIZE]; if (strlen(buffer) + strlen(text) > BLOB_SIZE-1) { log_messages.printf(MSG_CRITICAL, "insert_after: overflow: %d %d\n", strlen(buffer), strlen(text) ); return ERR_BUFFER_OVERFLOW; } p = strstr(buffer, after); if (!p) { log_messages.printf(MSG_CRITICAL, "insert_after: %s not found in %s\n", after, buffer ); return ERR_NULL; } p += strlen(after); strcpy(temp, p); strcpy(p, text); strcat(p, temp); return 0; } // add elements to WU's xml_doc, // in preparation for sending it to a client // int insert_wu_tags(WORKUNIT& wu, APP& app) { char buf[BLOB_SIZE]; sprintf(buf, " %f\n" " %f\n" " %f\n" " %f\n" " %s\n" " %s\n", wu.rsc_fpops_est, wu.rsc_fpops_bound, wu.rsc_memory_bound, wu.rsc_disk_bound, wu.name, app.name ); return insert_after(wu.xml_doc, "\n", buf); } // add the given workunit to a reply. // Add the app and app_version to the reply also. // int add_wu_to_reply( WORKUNIT& wu, SCHEDULER_REPLY& reply, APP* app, BEST_APP_VERSION* bavp ) { int retval; WORKUNIT wu2, wu3; APP_VERSION* avp = bavp->avp; // add the app, app_version, and workunit to the reply, // but only if they aren't already there // if (avp) { APP_VERSION av2=*avp, *avp2=&av2; if (strlen(config.replace_download_url_by_timezone)) { process_av_timezone(avp, av2); } g_reply->insert_app_unique(*app); av2.bavp = bavp; g_reply->insert_app_version_unique(*avp2); if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] Sending app_version %s %d %d %s; %.2f GFLOPS\n", g_reply->host.id, app->name, avp2->platformid, avp2->version_num, avp2->plan_class, bavp->host_usage.flops/1e9 ); } } // add time estimate to reply // wu2 = wu; // make copy since we're going to modify its XML field retval = insert_wu_tags(wu2, *app); if (retval) { log_messages.printf(MSG_CRITICAL, "insert_wu_tags failed %d\n", retval); return retval; } wu3 = wu2; if (strlen(config.replace_download_url_by_timezone)) { process_wu_timezone(wu2, wu3); } g_reply->insert_workunit_unique(wu3); // switch to tighter policy for estimating delay // return 0; } int insert_name_tags(RESULT& result, WORKUNIT const& wu) { char buf[256]; int retval; sprintf(buf, "%s\n", result.name); retval = insert_after(result.xml_doc_in, "\n", buf); if (retval) return retval; sprintf(buf, "%s\n", wu.name); retval = insert_after(result.xml_doc_in, "\n", buf); if (retval) return retval; return 0; } int insert_deadline_tag(RESULT& result) { char buf[256]; sprintf(buf, "%d\n", result.report_deadline); int retval = insert_after(result.xml_doc_in, "\n", buf); if (retval) return retval; return 0; } int update_wu_transition_time(WORKUNIT wu, time_t x) { DB_WORKUNIT dbwu; char buf[256]; dbwu.id = wu.id; // SQL note: can't use min() here // sprintf(buf, "transition_time=if(transition_time<%d, transition_time, %d)", (int)x, (int)x ); return dbwu.update_field(buf); } // return true iff a result for same WU is already being sent // bool wu_already_in_reply(WORKUNIT& wu) { unsigned int i; for (i=0; iresults.size(); i++) { if (wu.id == g_reply->results[i].workunitid) { return true; } } return false; } void lock_sema() { lock_semaphore(sema_key); } void unlock_sema() { unlock_semaphore(sema_key); } // return true if additional work is needed, // and there's disk space left, // and we haven't exceeded result per RPC limit, // and we haven't exceeded results per day limit // bool work_needed(bool locality_sched) { if (locality_sched) { // if we've failed to send a result because of a transient condition, // return false to preserve invariant // if (g_wreq->disk.insufficient || g_wreq->speed.insufficient || g_wreq->mem.insufficient || g_wreq->no_allowed_apps_available) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - locality condition\n" ); } return false; } } if (g_reply->host.nresults_today >= g_wreq->max_jobs_per_day) { g_wreq->daily_result_quota_exceeded = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - daily quota exceeded (%d>=%d)\n", g_reply->host.nresults_today, g_wreq->max_jobs_per_day ); } return false; } if (g_wreq->njobs_on_host >= g_wreq->max_jobs_on_host) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] in-progress job limit exceeded; %d >= %d\n", g_wreq->njobs_on_host, g_wreq->max_jobs_on_host ); } g_wreq->max_jobs_on_host_exceeded = true; return false; } if (g_wreq->njobs_on_host_cpu >= g_wreq->max_jobs_on_host_cpu) { g_wreq->clear_cpu_req(); g_wreq->max_jobs_on_host_cpu_exceeded = true; } if (g_wreq->njobs_on_host_gpu >= g_wreq->max_jobs_on_host_gpu) { g_wreq->clear_gpu_req(); if (g_wreq->effective_ngpus) { g_wreq->max_jobs_on_host_gpu_exceeded = true; } } if (g_wreq->njobs_sent >= g_wreq->max_jobs_per_rpc) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] stopping work search - njobs %d >= max_jobs_per_rpc %d\n", g_wreq->njobs_sent, g_wreq->max_jobs_per_rpc ); } return false; } #if 0 log_messages.printf(MSG_NORMAL, "work_needed: spec req %d sec to fill %.2f; CPU (%.2f, %.2f) CUDA (%.2f, %.2f) ATI(%.2f, %.2f)\n", g_wreq->rsc_spec_request, g_wreq->seconds_to_fill, g_wreq->cpu_req_secs, g_wreq->cpu_req_instances, g_wreq->cuda_req_secs, g_wreq->cuda_req_instances, g_wreq->ati_req_secs, g_wreq->ati_req_instances ); #endif if (g_wreq->rsc_spec_request) { if (g_wreq->need_cpu()) { return true; } if (g_wreq->need_cuda()) { return true; } if (g_wreq->need_ati()) { return true; } } else { if (g_wreq->seconds_to_fill > 0) { return true; } } if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] don't need more work\n"); } return false; } int add_result_to_reply( DB_RESULT& result, WORKUNIT& wu, BEST_APP_VERSION* bavp, bool locality_scheduling ) { int retval; bool resent_result = false; APP* app = ssp->lookup_app(wu.appid); retval = add_wu_to_reply(wu, *g_reply, app, bavp); if (retval) return retval; // Adjust available disk space. // In the scheduling locality case, // reduce the available space by less than the workunit rsc_disk_bound, // if the host already has the file or the file was not already sent. // if (!locality_scheduling || decrement_disk_space_locality(wu)) { g_wreq->disk_available -= wu.rsc_disk_bound; } // update the result in DB // result.hostid = g_reply->host.id; result.userid = g_reply->user.id; result.sent_time = time(0); result.report_deadline = result.sent_time + wu.delay_bound; result.flops_estimate = bavp->host_usage.flops; if (bavp->avp) { result.app_version_id = bavp->avp->id; } else { result.app_version_id = -1; } int old_server_state = result.server_state; if (result.server_state != RESULT_SERVER_STATE_IN_PROGRESS) { // We're sending this result for the first time // result.server_state = RESULT_SERVER_STATE_IN_PROGRESS; } else { // Result was already sent to this host but was lost, // so we're resending it. // resent_result = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [RESULT#%d] [HOST#%d] (resend lost work)\n", result.id, g_reply->host.id ); } } retval = result.mark_as_sent(old_server_state); if (retval == ERR_DB_NOT_FOUND) { log_messages.printf(MSG_CRITICAL, "[RESULT#%d] [HOST#%d]: CAN'T SEND, already sent to another host\n", result.id, g_reply->host.id ); } else if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't update result: %d\n", retval ); } if (retval) return retval; double est_dur = estimate_duration(wu, *bavp); if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[HOST#%d] Sending [RESULT#%d %s] (est. dur. %.2f seconds)\n", g_reply->host.id, result.id, result.name, est_dur ); } retval = update_wu_transition_time(wu, result.report_deadline); if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't update WU transition time: %d\n", retval ); return retval; } // The following overwrites the result's xml_doc field. // But that's OK cuz we're done with DB updates // retval = insert_name_tags(result, wu); if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't insert name tags: %d\n", retval ); return retval; } retval = insert_deadline_tag(result); if (retval) { log_messages.printf(MSG_CRITICAL, "add_result_to_reply: can't insert deadline tag: %d\n", retval ); return retval; } result.bavp = bavp; g_reply->insert_result(result); if (g_wreq->rsc_spec_request) { if (bavp->host_usage.ncudas) { g_wreq->cuda_req_secs -= est_dur; g_wreq->cuda_req_instances -= bavp->host_usage.ncudas; } else if (bavp->host_usage.natis) { g_wreq->ati_req_secs -= est_dur; g_wreq->ati_req_instances -= bavp->host_usage.natis; } else { g_wreq->cpu_req_secs -= est_dur; g_wreq->cpu_req_instances -= bavp->host_usage.avg_ncpus; } } else { g_wreq->seconds_to_fill -= est_dur; } update_estimated_delay(*bavp, est_dur); g_wreq->njobs_sent++; g_wreq->njobs_on_host++; if (bavp->host_usage.ncudas > 0) { g_wreq->njobs_on_host_gpu++; } else if (bavp->host_usage.natis > 0) { g_wreq->njobs_on_host_gpu++; } else { g_wreq->njobs_on_host_cpu++; } if (!resent_result) g_reply->host.nresults_today++; // add this result to workload for simulation // if (config.workload_sim && g_request->have_other_results_list) { IP_RESULT ipr ("", time(0)+wu.delay_bound, est_dur); g_request->ip_results.push_back(ipr); } // mark job as done if debugging flag is set; // this is used by sched_driver.C (performance testing) // if (mark_jobs_done) { DB_WORKUNIT dbwu; char buf[256]; sprintf(buf, "server_state=%d outcome=%d", RESULT_SERVER_STATE_OVER, RESULT_OUTCOME_SUCCESS ); result.update_field(buf); dbwu.id = wu.id; sprintf(buf, "transition_time=%ld", time(0)); dbwu.update_field(buf); } // If we're sending an unreplicated job to an untrusted host, // mark it as replicated // if (wu.target_nresults == 1 && app->target_nresults > 1) { if (g_wreq->trust) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%d] sending to trusted host, not replicating\n", wu.id ); } } else { DB_WORKUNIT dbwu; char buf[256]; sprintf(buf, "target_nresults=%d, min_quorum=%d, transition_time=%ld", app->target_nresults, app->target_nresults, time(0) ); dbwu.id = wu.id; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [WU#%d] sending to untrusted host, replicating\n", wu.id ); } retval = dbwu.update_field(buf); if (retval) { log_messages.printf(MSG_CRITICAL, "WU update failed: %d", retval ); } } } return 0; } // send messages to user about why jobs were or weren't sent // static void explain_to_user() { char helpful[512]; unsigned int i; int j; // If work was sent from apps the user did not select, explain. // NOTE: this will have to be done differently with matchmaker scheduling // if (!config.locality_scheduling && !config.matchmaker) { if (g_wreq->njobs_sent && !g_wreq->user_apps_only) { g_reply->insert_message( "No work can be sent for the applications you have selected", "high" ); // Inform the user about applications with no work // for (i=0; ipreferred_apps.size(); i++) { if (!g_wreq->preferred_apps[i].work_available) { APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid); // don't write message if the app is deprecated // if (app) { char explanation[256]; sprintf(explanation, "No work is available for %s", find_user_friendly_name(g_wreq->preferred_apps[i].appid) ); g_reply->insert_message( explanation, "high"); } } } // Tell the user about applications they didn't qualify for // for (j=0; jinsert_message(g_wreq->no_work_messages.at(j)); } g_reply->insert_message( "You have selected to receive work from other applications if no work is available for the applications you selected", "high" ); g_reply->insert_message( "Sending work from other applications", "high" ); } } // if client asked for work and we're not sending any, explain why // if (g_wreq->njobs_sent == 0) { g_reply->set_delay(DELAY_NO_WORK_TEMP); g_reply->insert_message("No work sent", "high"); // Tell the user about applications with no work // for (i=0; ipreferred_apps.size(); i++) { if (!g_wreq->preferred_apps[i].work_available) { APP* app = ssp->lookup_app(g_wreq->preferred_apps[i].appid); // don't write message if the app is deprecated if (app != NULL) { char explanation[256]; sprintf(explanation, "No work is available for %s", find_user_friendly_name(g_wreq->preferred_apps[i].appid) ); g_reply->insert_message(explanation, "high"); } } } // Tell the user about applications they didn't qualify for // for (i=0; ino_work_messages.size(); i++){ g_reply->insert_message(g_wreq->no_work_messages.at(i)); } if (g_wreq->no_allowed_apps_available) { g_reply->insert_message( "No work available for the applications you have selected. Please check your settings on the web site.", "high" ); } if (g_wreq->speed.insufficient) { if (g_request->core_client_version>419) { sprintf(helpful, "(won't finish in time) " "BOINC runs %.1f%% of time, computation enabled %.1f%% of that", 100.0*g_reply->host.on_frac, 100.0*g_reply->host.active_frac ); } else { sprintf(helpful, "(won't finish in time) " "Computer available %.1f%% of time", 100.0*g_reply->host.on_frac ); } g_reply->insert_message(helpful, "high"); } if (g_wreq->hr_reject_temp) { g_reply->insert_message( "(there was work but it was committed to other platforms)", "high" ); } if (g_wreq->hr_reject_perm) { g_reply->insert_message( "(your platform is not supported by this project)", "high" ); } if (g_wreq->outdated_client) { g_reply->insert_message( " (your BOINC client is old - please install current version)", "high" ); g_reply->set_delay(DELAY_NO_WORK_PERM); log_messages.printf(MSG_NORMAL, "Not sending work because client is outdated\n" ); } if (g_wreq->excessive_work_buf) { g_reply->insert_message( "(Your network connection interval is longer than WU deadline)", "high" ); } if (g_wreq->no_cuda_prefs) { g_reply->insert_message( "Jobs for NVIDIA GPU are available, but your preferences are set to not accept them", "low" ); } if (g_wreq->no_ati_prefs) { g_reply->insert_message( "Jobs for ATI GPU are available, but your preferences are set to not accept them", "low" ); } if (g_wreq->no_cpu_prefs) { g_reply->insert_message( "Jobs for CPU are available, but your preferences are set to not accept them", "low" ); } if (g_wreq->daily_result_quota_exceeded) { struct tm *rpc_time_tm; int delay_time; sprintf(helpful, "(reached daily quota of %d tasks)", g_wreq->max_jobs_per_day ); g_reply->insert_message(helpful, "high"); log_messages.printf(MSG_NORMAL, "Daily result quota %d exceeded for host %d\n", g_wreq->max_jobs_per_day, g_reply->host.id ); // set delay so host won't return until a random time in // the first hour of the next day. // This is to prevent a lot of hosts from flooding the scheduler // with requests at the same time of day. // time_t t = g_reply->host.rpc_time; rpc_time_tm = localtime(&t); delay_time = (23 - rpc_time_tm->tm_hour) * 3600 + (59 - rpc_time_tm->tm_min) * 60 + (60 - rpc_time_tm->tm_sec) + (int)(3600*(double)rand()/(double)RAND_MAX); g_reply->set_delay(delay_time); } if (g_wreq->max_jobs_on_host_exceeded) { sprintf(helpful, "(reached limit of %d tasks in progress)", g_wreq->max_jobs_on_host ); g_reply->insert_message(helpful, "high"); g_reply->set_delay(DELAY_NO_WORK_CACHE); log_messages.printf(MSG_NORMAL, "host %d already has %d job(s) in progress\n", g_reply->host.id, g_wreq->njobs_on_host ); } if (g_wreq->max_jobs_on_host_cpu_exceeded) { sprintf(helpful, "(reached limit of %d CPU tasks in progress)", g_wreq->max_jobs_on_host_cpu ); g_reply->insert_message(helpful, "high"); g_reply->set_delay(DELAY_NO_WORK_CACHE); log_messages.printf(MSG_NORMAL, "host %d already has %d CPU job(s) in progress\n", g_reply->host.id, g_wreq->njobs_on_host_cpu ); } if (g_wreq->max_jobs_on_host_gpu_exceeded) { sprintf(helpful, "(reached limit of %d GPU tasks in progress)", g_wreq->max_jobs_on_host_gpu ); g_reply->insert_message(helpful, "high"); g_reply->set_delay(DELAY_NO_WORK_CACHE); log_messages.printf(MSG_NORMAL, "host %d already has %d GPU job(s) in progress\n", g_reply->host.id, g_wreq->njobs_on_host_gpu ); } } } #define ER_MAX 0.05 // decide whether to unreplicated jobs to this host // void set_trust() { g_wreq->trust = false; if (g_reply->host.error_rate > ER_MAX) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] set_trust: error rate %f > %f, don't trust\n", g_reply->host.error_rate, ER_MAX ); } return; } double x = sqrt(g_reply->host.error_rate/ER_MAX); if (drand() > x) g_wreq->trust = true; if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] set_trust: random choice for error rate %f: %s\n", g_reply->host.error_rate, g_wreq->trust?"yes":"no" ); } } static double clamp_req_sec(double x) { if (x < MIN_REQ_SECS) return MIN_REQ_SECS; if (x > MAX_REQ_SECS) return MAX_REQ_SECS; return x; } // decipher request type, fill in WORK_REQ // void send_work_setup() { unsigned int i; g_wreq->disk_available = max_allowable_disk(); get_mem_sizes(); get_running_frac(); get_dcf(); g_wreq->get_job_limits(); g_wreq->seconds_to_fill = clamp_req_sec(g_request->work_req_seconds); g_wreq->cpu_req_secs = clamp_req_sec(g_request->cpu_req_secs); g_wreq->cpu_req_instances = g_request->cpu_req_instances; g_wreq->anonymous_platform = anonymous(g_request->platforms.list[0]); if (g_request->coproc_cuda) { g_wreq->cuda_req_secs = clamp_req_sec(g_request->coproc_cuda->req_secs); g_wreq->cuda_req_instances = g_request->coproc_cuda->req_instances; if (g_request->coproc_cuda->estimated_delay < 0) { g_request->coproc_cuda->estimated_delay = g_request->cpu_estimated_delay; } } if (g_request->coproc_ati) { g_wreq->ati_req_secs = clamp_req_sec(g_request->coproc_ati->req_secs); g_wreq->ati_req_instances = g_request->coproc_ati->req_instances; if (g_request->coproc_ati->estimated_delay < 0) { g_request->coproc_ati->estimated_delay = g_request->cpu_estimated_delay; } } if (g_wreq->cpu_req_secs || g_wreq->cuda_req_secs || g_wreq->ati_req_secs) { g_wreq->rsc_spec_request = true; } else { g_wreq->rsc_spec_request = false; } // print details of request to log // if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] %s matchmaker scheduling; %s EDF sim\n", config.matchmaker?"Using":"Not using", config.workload_sim?"Using":"Not using" ); log_messages.printf(MSG_NORMAL, "[send] CPU: req %.2f sec, %.2f instances; est delay %.2f\n", g_wreq->cpu_req_secs, g_wreq->cpu_req_instances, g_request->cpu_estimated_delay ); if (g_request->coproc_cuda) { log_messages.printf(MSG_NORMAL, "[send] CUDA: req %.2f sec, %.2f instances; est delay %.2f\n", g_wreq->cuda_req_secs, g_wreq->cuda_req_instances, g_request->coproc_cuda->estimated_delay ); } if (g_request->coproc_ati) { log_messages.printf(MSG_NORMAL, "[send] ATI: req %.2f sec, %.2f instances; est delay %.2f\n", g_wreq->ati_req_secs, g_wreq->ati_req_instances, g_request->coproc_ati->estimated_delay ); } log_messages.printf(MSG_NORMAL, "[send] work_req_seconds: %.2f secs\n", g_wreq->seconds_to_fill ); log_messages.printf(MSG_NORMAL, "[send] available disk %.2f GB, work_buf_min %d\n", g_wreq->disk_available/GIGA, (int)g_request->global_prefs.work_buf_min() ); log_messages.printf(MSG_NORMAL, "[send] active_frac %f on_frac %f DCF %f\n", g_reply->host.active_frac, g_reply->host.on_frac, g_reply->host.duration_correction_factor ); if (g_wreq->anonymous_platform) { log_messages.printf(MSG_NORMAL, "Anonymous platform app versions:\n" ); for (i=0; iclient_app_versions.size(); i++) { CLIENT_APP_VERSION& cav = g_request->client_app_versions[i]; log_messages.printf(MSG_NORMAL, " app: %s ver: %d\n", cav.app_name, cav.version_num ); } } } } void send_work() { if (!g_wreq->rsc_spec_request && g_wreq->seconds_to_fill == 0) { return; } if (all_apps_use_hr && hr_unknown_platform(g_request->host)) { log_messages.printf(MSG_NORMAL, "Not sending work because unknown HR class\n" ); g_wreq->hr_reject_perm = true; return; } get_host_info(); get_prefs_info(); set_trust(); if (config.enable_assignment) { if (send_assigned_jobs()) { if (config.debug_assignment) { log_messages.printf(MSG_NORMAL, "[assign] [HOST#%d] sent assigned jobs\n", g_reply->host.id ); } return; } } if (config.workload_sim && g_request->have_other_results_list) { init_ip_results( g_request->global_prefs.work_buf_min(), g_wreq->effective_ncpus, g_request->ip_results ); } if (config.locality_scheduler_fraction > 0) { if (drand() < config.locality_scheduler_fraction) { if (config.debug_locality) log_messages.printf(MSG_NORMAL, "[mixed] sending locality work first\n"); send_work_locality(); if (config.debug_locality) log_messages.printf(MSG_NORMAL, "[mixed] sending non-locality work second\n"); send_work_old(); } else { if (config.debug_locality) log_messages.printf(MSG_NORMAL, "[mixed] sending non-locality work first\n"); send_work_old(); if (config.debug_locality) log_messages.printf(MSG_NORMAL, "[mixed] sending locality work second\n"); send_work_locality(); } } else if (config.locality_scheduling) { send_work_locality(); } else if (config.matchmaker) { send_work_matchmaker(); } else { send_work_old(); } explain_to_user(); } const char *BOINC_RCSID_32dcd335e7 = "$Id$";