boinc/sched/sched_customize.cpp

362 lines
12 KiB
C++

// This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
//
// This file contains functions that can be customized to
// implement project-specific scheduling policies.
// The functions are:
//
// wu_is_infeasible_custom()
// Decide whether host can run a job using a particular app version
// app_plan()
// Decide whether host can use an app version,
// and if so what resources it will use
// app_plan_uses_gpu():
// Which plan classes use GPUs
// JOB::get_score():
// Determine the value of sending a particular job to host;
// (used only by "matchmaker" scheduling)
//
// WARNING: if you modify this file, you must prevent it from
// being overwritten the next time you update BOINC source code.
// You can either:
// 1) write-protect this file, or
// 2) put this in a differently-named file and change the Makefile.am
// (and write-protect that)
// In either case, put your version under source-code control, e.g. SVN
#include "str_util.h"
#include "sched_config.h"
#include "sched_main.h"
#include "sched_msgs.h"
#include "sched_send.h"
#include "sched_score.h"
#include "sched_shmem.h"
#include "sched_version.h"
#include "sched_customize.h"
bool wu_is_infeasible_custom(WORKUNIT& wu, APP& app, BEST_APP_VERSION& bav) {
#if 0
// example: for CUDA app, wu.batch is the minimum number of processors.
// Don't send if #procs is less than this.
//
if (!strcmp(app.name, "foobar") && bav.host_usage.ncudas) {
if (!g_request->coproc_cuda) {
log_messages.printf(MSG_CRITICAL,
"[HOST#%d] expected CUDA device\n", g_reply->host.id
);
return true;
}
int n = g_request->coproc_cuda->prop.multiProcessorCount;
if (n < wu.batch) {
return true;
}
}
#endif
return false;
}
int app_plan(SCHEDULER_REQUEST& sreq, char* plan_class, HOST_USAGE& hu) {
if (!strcmp(plan_class, "mt")) {
// the following is for an app that:
// - can use from 1 to 64 threads, and can control this exactly
// - if it uses N threads, will use .65N cores on average
// (hence on a uniprocessor we'll use a sequential app
// if one is available)
//
double ncpus = g_wreq->effective_ncpus;
// number of usable CPUs, taking user prefs into account
int nthreads = (int)(ncpus/.65);
if (!nthreads) return PLAN_REJECT_INSUFFICIENT_CPUS;
if (nthreads > 64) nthreads = 64;
hu.avg_ncpus = nthreads*.65;
hu.max_ncpus = nthreads;
sprintf(hu.cmdline, "--nthreads %d", nthreads);
hu.flops = sreq.host.p_fpops*hu.avg_ncpus;
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] Multi-thread app estimate %.2f GFLOPS\n",
hu.flops/1e9
);
}
return 0;
} else if (strstr(plan_class, "ati")) {
// the following is for an app that uses an ATI GPU
//
COPROC_ATI* cp = (COPROC_ATI*)sreq.coprocs.lookup("ATI");
if (!cp) {
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] Host lacks ATI GPU for plan class ati\n"
);
}
return PLAN_REJECT_ATI_NO_DEVICE;
}
hu.flops = cp->flops();
// assume we'll need 0.5% as many CPU FLOPS as GPU FLOPS
// to keep the GPU fed.
//
double x = (hu.flops*0.005)/sreq.host.p_fpops;
hu.avg_ncpus = x;
hu.max_ncpus = x;
hu.natis = 1;
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] ATI app estimated %.2f GFLOPS\n", hu.flops/1e9
);
}
return 0;
} else if (strstr(plan_class, "cuda")) {
// the following is for an app that uses a CUDA GPU
//
COPROC_CUDA* cp = (COPROC_CUDA*)sreq.coprocs.lookup("CUDA");
if (!cp) {
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] Host lacks CUDA coprocessor for plan class cuda\n"
);
}
return PLAN_REJECT_CUDA_NO_DEVICE;
}
// check compute capability
//
int v = (cp->prop.major)*100 + cp->prop.minor;
if (v < 100) {
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] Compute capability %d < 1.0\n", v
);
}
return PLAN_REJECT_NVIDIA_COMPUTE_CAPABILITY;
}
// for CUDA 2.3, we need to check the CUDA RT version.
// Old BOINC clients report display driver version;
// newer ones report CUDA RT version
//
if (!strcmp(plan_class, "cuda23")) {
if (cp->cuda_version) {
if (cp->cuda_version < 2030) {
return PLAN_REJECT_CUDA_VERSION;
}
} else if (cp->display_driver_version) {
if (cp->display_driver_version < PLAN_CUDA23_MIN_DRIVER_VERSION) {
return PLAN_REJECT_CUDA_VERSION;
}
} else {
return PLAN_REJECT_CUDA_VERSION;
}
#ifdef PLAN_CUDA23_MIN_RAM
if (cp->prop.dtotalGlobalMem < PLAN_CUDA23_MIN_RAM) {
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] CUDA23 mem %d < %d\n",
cp->prop.dtotalGlobalMem, PLAN_CUDA23_MIN_RAM
);
}
return PLAN_REJECT_CUDA_MEM;
}
#endif
} else {
if (cp->display_driver_version && cp->display_driver_version < PLAN_CUDA_MIN_DRIVER_VERSION) {
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] NVIDIA driver version %d < PLAN_CUDA_MIN_DRIVER_VERSION\n",
cp->display_driver_version
);
}
return PLAN_REJECT_NVIDIA_DRIVER_VERSION;
}
}
if (cp->prop.dtotalGlobalMem < PLAN_CUDA_MIN_RAM) {
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] CUDA mem %d < %d\n",
cp->prop.dtotalGlobalMem, PLAN_CUDA_MIN_RAM
);
}
return PLAN_REJECT_CUDA_MEM;
}
hu.flops = cp->flops_estimate();
if (!strcmp(plan_class, "cuda23")) {
hu.flops *= 1.01;
}
// assume we'll need 0.5% as many CPU FLOPS as GPU FLOPS
// to keep the GPU fed.
//
double x = (hu.flops*0.005)/sreq.host.p_fpops;
hu.avg_ncpus = x;
hu.max_ncpus = x;
hu.ncudas = 1;
if (config.debug_version_select) {
log_messages.printf(MSG_NORMAL,
"[version] CUDA app estimated %.2f GFLOPS (clock %d count %d)\n",
hu.flops/1e9, cp->prop.clockRate,
cp->prop.multiProcessorCount
);
}
return 0;
} else if (!strcmp(plan_class, "nci")) {
// The following is for a non-CPU-intensive application.
// Say that we'll use 1% of a CPU.
// This will cause the client (6.7+) to run it at non-idle priority
//
hu.avg_ncpus = .01;
hu.max_ncpus = .01;
hu.flops = sreq.host.p_fpops*1.01;
// The *1.01 is needed to ensure that we'll send this app
// version rather than a non-plan-class one
return 0;
} else if (!strcmp(plan_class, "sse3")) {
// the following is for an app that requires a processor with SSE3,
// and will run 10% faster if so
//
downcase_string(sreq.host.p_features);
if (!strstr(sreq.host.p_features, "sse3")) {
return PLAN_REJECT_CPU_FEATURE;
}
hu.avg_ncpus = 1;
hu.max_ncpus = 1;
hu.flops = 1.1*sreq.host.p_fpops;
return 0;
}
log_messages.printf(MSG_CRITICAL,
"Unknown plan class: %s\n", plan_class
);
return PLAN_REJECT_UNKNOWN;
}
// the following is used to enforce limits on in-progress jobs
// for GPUs and CPUs (see handle_request.cpp)
//
bool app_plan_uses_gpu(const char* plan_class) {
if (!strcmp(plan_class, "cuda")) {
return true;
}
return false;
}
// compute a "score" for sending this job to this host.
// Return false if the WU is infeasible.
// Otherwise set est_time and disk_usage.
//
bool JOB::get_score() {
WORKUNIT wu;
int retval;
WU_RESULT& wu_result = ssp->wu_results[index];
wu = wu_result.workunit;
app = ssp->lookup_app(wu.appid);
score = 0;
// Find the best app version to use.
//
bavp = get_app_version(wu, true);
if (!bavp) return false;
retval = wu_is_infeasible_fast(wu, *app, *bavp);
if (retval) {
if (config.debug_send) {
log_messages.printf(MSG_NORMAL,
"[send] [HOST#%d] [WU#%d %s] WU is infeasible: %s\n",
g_reply->host.id, wu.id, wu.name, infeasible_string(retval)
);
}
return false;
}
score = 1;
#if 0
// example: for CUDA app, wu.batch is the minimum number of processors.
// add min/actual to score
// (this favors sending jobs that need lots of procs to GPUs that have them)
// IF YOU USE THIS, USE THE PART IN wu_is_infeasible_custom() ALSO
//
if (!strcmp(app->name, "foobar") && bavp->host_usage.ncudas) {
int n = g_request->coproc_cuda->prop.multiProcessorCount;
score += ((double)wu.batch)/n;
}
#endif
// check if user has selected apps,
// and send beta work to beta users
//
if (app->beta && !config.distinct_beta_apps) {
if (g_wreq->allow_beta_work) {
score += 1;
} else {
return false;
}
} else {
if (app_not_selected(wu)) {
if (!g_wreq->allow_non_preferred_apps) {
return false;
} else {
// Allow work to be sent, but it will not get a bump in its score
}
} else {
score += 1;
}
}
// if job needs to get done fast, send to fast/reliable host
//
if (g_wreq->reliable && (wu_result.need_reliable)) {
score += 1;
}
// if job already committed to an HR class,
// try to send to host in that class
//
if (wu_result.infeasible_count) {
score += 1;
}
// Favor jobs that will run fast
//
score += bavp->host_usage.flops/1e9;
// match large jobs to fast hosts
//
if (config.job_size_matching) {
double host_stdev = (g_reply->host.p_fpops - ssp->perf_info.host_fpops_mean)/ ssp->perf_info.host_fpops_stdev;
double diff = host_stdev - wu_result.fpops_size;
score -= diff*diff;
}
// TODO: If user has selected some apps but will accept jobs from others,
// try to send them jobs from the selected apps
//
est_time = estimate_duration(wu, *bavp);
disk_usage = wu.rsc_disk_bound;
return true;
}