// This file is part of BOINC. // http://boinc.berkeley.edu // Copyright (C) 2008 University of California // // BOINC is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // BOINC is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with BOINC. If not, see . // // This file contains functions that can be customized to // implement project-specific scheduling policies. // The functions are: // // wu_is_infeasible_custom() // Decide whether host can run a job using a particular app version // app_plan() // Decide whether host can use an app version, // and if so what resources it will use // app_plan_uses_gpu(): // Which plan classes use GPUs // JOB::get_score(): // Determine the value of sending a particular job to host; // (used only by "matchmaker" scheduling) // // WARNING: if you modify this file, you must prevent it from // being overwritten the next time you update BOINC source code. // You can either: // 1) write-protect this file, or // 2) put this in a differently-named file and change the Makefile.am // (and write-protect that) // In either case, put your version under source-code control, e.g. SVN #include "str_util.h" #include "sched_config.h" #include "sched_main.h" #include "sched_msgs.h" #include "sched_send.h" #include "sched_score.h" #include "sched_shmem.h" #include "sched_version.h" #include "sched_customize.h" bool wu_is_infeasible_custom(WORKUNIT& wu, APP& app, BEST_APP_VERSION& bav) { #if 0 // example: for CUDA app, wu.batch is the minimum number of processors. // Don't send if #procs is less than this. // if (!strcmp(app.name, "foobar") && bav.host_usage.ncudas) { if (!g_request->coproc_cuda) { log_messages.printf(MSG_CRITICAL, "[HOST#%d] expected CUDA device\n", g_reply->host.id ); return true; } int n = g_request->coproc_cuda->prop.multiProcessorCount; if (n < wu.batch) { return true; } } #endif return false; } int app_plan(SCHEDULER_REQUEST& sreq, char* plan_class, HOST_USAGE& hu) { if (!strcmp(plan_class, "mt")) { // the following is for an app that: // - can use from 1 to 64 threads, and can control this exactly // - if it uses N threads, will use .65N cores on average // (hence on a uniprocessor we'll use a sequential app // if one is available) // double ncpus = g_wreq->effective_ncpus; // number of usable CPUs, taking user prefs into account int nthreads = (int)(ncpus/.65); if (!nthreads) return PLAN_REJECT_INSUFFICIENT_CPUS; if (nthreads > 64) nthreads = 64; hu.avg_ncpus = nthreads*.65; hu.max_ncpus = nthreads; sprintf(hu.cmdline, "--nthreads %d", nthreads); hu.flops = sreq.host.p_fpops*hu.avg_ncpus; if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] Multi-thread app estimate %.2f GFLOPS\n", hu.flops/1e9 ); } return 0; } else if (strstr(plan_class, "ati")) { // the following is for an app that uses an ATI GPU // COPROC_ATI* cp = (COPROC_ATI*)sreq.coprocs.lookup("ATI"); if (!cp) { if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] Host lacks ATI GPU for plan class ati\n" ); } return PLAN_REJECT_ATI_NO_DEVICE; } hu.flops = cp->flops(); // assume we'll need 0.5% as many CPU FLOPS as GPU FLOPS // to keep the GPU fed. // double x = (hu.flops*0.005)/sreq.host.p_fpops; hu.avg_ncpus = x; hu.max_ncpus = x; hu.natis = 1; if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] ATI app estimated %.2f GFLOPS\n", hu.flops/1e9 ); } return 0; } else if (strstr(plan_class, "cuda")) { // the following is for an app that uses a CUDA GPU // COPROC_CUDA* cp = (COPROC_CUDA*)sreq.coprocs.lookup("CUDA"); if (!cp) { if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] Host lacks CUDA coprocessor for plan class cuda\n" ); } return PLAN_REJECT_CUDA_NO_DEVICE; } // check compute capability // int v = (cp->prop.major)*100 + cp->prop.minor; if (v < 100) { if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] Compute capability %d < 1.0\n", v ); } return PLAN_REJECT_NVIDIA_COMPUTE_CAPABILITY; } // for CUDA 2.3, we need to check the CUDA RT version. // Old BOINC clients report display driver version; // newer ones report CUDA RT version // if (!strcmp(plan_class, "cuda23")) { if (cp->cuda_version) { if (cp->cuda_version < 2030) { return PLAN_REJECT_CUDA_VERSION; } } else if (cp->display_driver_version) { if (cp->display_driver_version < PLAN_CUDA23_MIN_DRIVER_VERSION) { return PLAN_REJECT_CUDA_VERSION; } } else { return PLAN_REJECT_CUDA_VERSION; } #ifdef PLAN_CUDA23_MIN_RAM if (cp->prop.dtotalGlobalMem < PLAN_CUDA23_MIN_RAM) { if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] CUDA23 mem %d < %d\n", cp->prop.dtotalGlobalMem, PLAN_CUDA23_MIN_RAM ); } return PLAN_REJECT_CUDA_MEM; } #endif } else { if (cp->display_driver_version && cp->display_driver_version < PLAN_CUDA_MIN_DRIVER_VERSION) { if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] NVIDIA driver version %d < PLAN_CUDA_MIN_DRIVER_VERSION\n", cp->display_driver_version ); } return PLAN_REJECT_NVIDIA_DRIVER_VERSION; } } if (cp->prop.dtotalGlobalMem < PLAN_CUDA_MIN_RAM) { if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] CUDA mem %d < %d\n", cp->prop.dtotalGlobalMem, PLAN_CUDA_MIN_RAM ); } return PLAN_REJECT_CUDA_MEM; } hu.flops = cp->flops_estimate(); if (!strcmp(plan_class, "cuda23")) { hu.flops *= 1.01; } // assume we'll need 0.5% as many CPU FLOPS as GPU FLOPS // to keep the GPU fed. // double x = (hu.flops*0.005)/sreq.host.p_fpops; hu.avg_ncpus = x; hu.max_ncpus = x; hu.ncudas = 1; if (config.debug_version_select) { log_messages.printf(MSG_NORMAL, "[version] CUDA app estimated %.2f GFLOPS (clock %d count %d)\n", hu.flops/1e9, cp->prop.clockRate, cp->prop.multiProcessorCount ); } return 0; } else if (!strcmp(plan_class, "nci")) { // The following is for a non-CPU-intensive application. // Say that we'll use 1% of a CPU. // This will cause the client (6.7+) to run it at non-idle priority // hu.avg_ncpus = .01; hu.max_ncpus = .01; hu.flops = sreq.host.p_fpops*1.01; // The *1.01 is needed to ensure that we'll send this app // version rather than a non-plan-class one return 0; } else if (!strcmp(plan_class, "sse3")) { // the following is for an app that requires a processor with SSE3, // and will run 10% faster if so // downcase_string(sreq.host.p_features); if (!strstr(sreq.host.p_features, "sse3")) { return PLAN_REJECT_CPU_FEATURE; } hu.avg_ncpus = 1; hu.max_ncpus = 1; hu.flops = 1.1*sreq.host.p_fpops; return 0; } log_messages.printf(MSG_CRITICAL, "Unknown plan class: %s\n", plan_class ); return PLAN_REJECT_UNKNOWN; } // the following is used to enforce limits on in-progress jobs // for GPUs and CPUs (see handle_request.cpp) // bool app_plan_uses_gpu(const char* plan_class) { if (!strcmp(plan_class, "cuda")) { return true; } return false; } // compute a "score" for sending this job to this host. // Return false if the WU is infeasible. // Otherwise set est_time and disk_usage. // bool JOB::get_score() { WORKUNIT wu; int retval; WU_RESULT& wu_result = ssp->wu_results[index]; wu = wu_result.workunit; app = ssp->lookup_app(wu.appid); score = 0; // Find the best app version to use. // bavp = get_app_version(wu, true); if (!bavp) return false; retval = wu_is_infeasible_fast(wu, *app, *bavp); if (retval) { if (config.debug_send) { log_messages.printf(MSG_NORMAL, "[send] [HOST#%d] [WU#%d %s] WU is infeasible: %s\n", g_reply->host.id, wu.id, wu.name, infeasible_string(retval) ); } return false; } score = 1; #if 0 // example: for CUDA app, wu.batch is the minimum number of processors. // add min/actual to score // (this favors sending jobs that need lots of procs to GPUs that have them) // IF YOU USE THIS, USE THE PART IN wu_is_infeasible_custom() ALSO // if (!strcmp(app->name, "foobar") && bavp->host_usage.ncudas) { int n = g_request->coproc_cuda->prop.multiProcessorCount; score += ((double)wu.batch)/n; } #endif // check if user has selected apps, // and send beta work to beta users // if (app->beta && !config.distinct_beta_apps) { if (g_wreq->allow_beta_work) { score += 1; } else { return false; } } else { if (app_not_selected(wu)) { if (!g_wreq->allow_non_preferred_apps) { return false; } else { // Allow work to be sent, but it will not get a bump in its score } } else { score += 1; } } // if job needs to get done fast, send to fast/reliable host // if (g_wreq->reliable && (wu_result.need_reliable)) { score += 1; } // if job already committed to an HR class, // try to send to host in that class // if (wu_result.infeasible_count) { score += 1; } // Favor jobs that will run fast // score += bavp->host_usage.flops/1e9; // match large jobs to fast hosts // if (config.job_size_matching) { double host_stdev = (g_reply->host.p_fpops - ssp->perf_info.host_fpops_mean)/ ssp->perf_info.host_fpops_stdev; double diff = host_stdev - wu_result.fpops_size; score -= diff*diff; } // TODO: If user has selected some apps but will accept jobs from others, // try to send them jobs from the selected apps // est_time = estimate_duration(wu, *bavp); disk_usage = wu.rsc_disk_bound; return true; }