Also covering the two variations for blitting only every second row or
blitting only a 320x200 quarter, as seen in the endings.
So yeah, there's indeed nothing wrong with piread.cpp. TH03 just uses that
separate function that only blits every second row of an image, and indeed
always loads the entire image as it would appear in a PNG conversion. Here's
what happens if you display these images using the non-interlacing function:
https://www.dropbox.com/s/885krj09d9l0890/th03%20PI%20no%20interlace.png
With TH03 changing the calling convention for most of the code from __cdecl to
__pascal, I've been getting more and more confused about this myself. So,
let's settle on the following consistent syntax for function calls:
* C where the calling convention is actually __cdecl and where TASM's emitted
__cdecl code matches the original binary
* PASCAL where the calling convention is actually __pascal
* STDCALL where the calling convention is actually __cdecl, but where
the caller either defers stack cleanup (summing up the stack size of
multiple functions, then cleaning it all in a single "add sp" instruction)
or where the stack is cleared in a different way (e.g. "pop cx").
Unfortunately though, when using the ARG directive to automatically generate
an appropriate RET instruction for the given calling convention, TASM always
emits ENTER and LEAVE instructions even when no local variables are declared,
which greatly limits the number of functions where we can use that syntax. -.-
For 32-bit immediate values, PUSH by itself is enough. For everything else,
PUSHD works in both TASM and JWasm.
Also, could it be...? Could we actually move to JWasm without breaking the
build in TASM at all?
... and then I end up copying modified versions into the individual game
subdirectories after all, because the changes between games were simply too
drastic. (That's also why I'm counting pfopen() itself twice.)
Only one slice left now, and then we're done with reduction!