35 lines
1.1 KiB
ReStructuredText
35 lines
1.1 KiB
ReStructuredText
========
|
|
Usage
|
|
========
|
|
|
|
Simple Example
|
|
--------------
|
|
You can usually just use the `find_near_matches()` utility function, which
|
|
chooses a suitable fuzzy search implementation according to the given
|
|
parameters:
|
|
|
|
.. code:: python
|
|
|
|
>>> from fuzzysearch import find_near_matches
|
|
>>> find_near_matches('PATTERN', 'aaaPATERNaaa', max_l_dist=1)
|
|
[Match(start=3, end=9, dist=1)]
|
|
|
|
Advanced Example
|
|
----------------
|
|
If needed you can choose a specific search implementation, such as
|
|
`find_near_matches_with_ngrams()`:
|
|
|
|
.. code:: python
|
|
|
|
>>> sequence = '''\
|
|
GACTAGCACTGTAGGGATAACAATTTCACACAGGTGGACAATTACATTGAAAATCACAGATTGGTCACACACACA
|
|
TTGGACATACATAGAAACACACACACATACATTAGATACGAACATAGAAACACACATTAGACGCGTACATAGACA
|
|
CAAACACATTGACAGGCAGTTCAGATGATGACGCCCGACTGATACTCGCGTAGTCGTGGGAGGCAAGGCACACAG
|
|
GGGATAGG'''
|
|
>>> subsequence = 'TGCACTGTAGGGATAACAAT' #distance 1
|
|
>>> max_distance = 2
|
|
|
|
>>> from fuzzysearch import find_near_matches_with_ngrams
|
|
>>> find_near_matches_with_ngrams(subsequence, sequence, max_distance)
|
|
[Match(start=3, end=24, dist=1)]
|