fuzzysearch/benchmarks/__main__.py

46 lines
1.5 KiB
Python
Raw Normal View History

2014-04-04 14:40:11 +00:00
import textwrap
import timeit
2014-04-04 14:40:11 +00:00
import argparse
from benchmarks import benchmarks, search_functions
2014-04-04 14:40:11 +00:00
def print_results(timings, number, repeat, precision=3):
best = min(timings)
usec = best * 1e6 / number
if usec < 1000:
x = "best of %d: %.*g usec per loop" % (repeat, precision, usec)
else:
msec = usec / 1000
if msec < 1000:
x = "best of %d: %.*g msec per loop" % (repeat, precision, msec)
else:
sec = msec / 1000
x = "best of %d: %.*g sec per loop" % (repeat, precision, sec)
print("%d loops, " % number + x)
parser = argparse.ArgumentParser(description='Run fuzzysearch benchmarks.')
parser.add_argument('search_function', choices=search_functions)
parser.add_argument('benchmark', choices=benchmarks)
parser.add_argument('-r', '--repetitions', type=int, default=5,
help='number of times to run the benchmark')
parser.add_argument('-n', '--number', type=int, default=10**5,
help='number of loop iterations to run in each repetition')
args = parser.parse_args()
setup = textwrap.dedent('''\
from benchmarks import get_benchmark, run_benchmark
search_func, search_args = get_benchmark({search_function!r},
{benchmark!r})
''').format(**args.__dict__)
2014-05-16 09:18:05 +00:00
code = 'run_benchmark(search_func, search_args)'
2014-04-04 14:40:11 +00:00
timings = timeit.Timer(code, setup=setup).repeat(args.repetitions, args.number)
print_results(timings, args.number, args.repetitions)