fuzzysearch/benchmarks/__init__.py

94 lines
3.6 KiB
Python
Raw Normal View History

import random
from fuzzysearch.levenshtein import \
find_near_matches_levenshtein_linear_programming
from fuzzysearch.levenshtein_ngram import \
find_near_matches_levenshtein_ngrams as fnm_levenshtein_ngrams
2014-04-12 15:20:10 +00:00
from fuzzysearch.substitutions_only import \
find_near_matches_substitutions_ngrams as fnm_substitutions_ngrams, \
find_near_matches_substitutions_linear_programming
from fuzzysearch.generic_search import \
find_near_matches_generic_linear_programming, \
find_near_matches_generic_ngrams, has_near_match_generic_ngrams
from fuzzysearch._generic_search import \
find_near_matches_generic_linear_programming as \
find_near_matches_generic_linear_programming_cython
def fnm_levenshtein_lp(subsequence, sequence, max_l_dist):
return list(find_near_matches_levenshtein_linear_programming(
subsequence, sequence, max_l_dist))
def fnm_substitutions_lp(subsequence, sequence, max_substitutions):
return list(find_near_matches_substitutions_linear_programming(
subsequence, sequence, max_substitutions))
def fnm_generic_lp(subsequence, sequence, max_l_dist):
return list(find_near_matches_generic_linear_programming(
subsequence, sequence, max_l_dist, max_l_dist, max_l_dist, max_l_dist))
def fnm_generic_lp_cython(subsequence, sequence, max_l_dist):
return list(find_near_matches_generic_linear_programming_cython(
subsequence, sequence, max_l_dist, max_l_dist, max_l_dist, max_l_dist))
def fnm_generic_ngrams(subsequence, sequence, max_l_dist):
return list(find_near_matches_generic_ngrams(
subsequence, sequence, max_l_dist, max_l_dist, max_l_dist, max_l_dist))
def hnm_generic_ngrams(subsequence, sequence, max_l_dist):
return has_near_match_generic_ngrams(
subsequence, sequence, max_l_dist, max_l_dist, max_l_dist, max_l_dist)
search_functions = {
'levenshtein_lp': fnm_levenshtein_lp,
'levenshtein_ngrams': fnm_levenshtein_ngrams,
'substitutions_lp': fnm_substitutions_lp,
'substitutions_ngrams': fnm_substitutions_ngrams,
'generic_lp': fnm_generic_lp,
'generic_lp_cython': fnm_generic_lp_cython,
'generic_ngrams': fnm_generic_ngrams,
'has_match_generic_ngrams': hnm_generic_ngrams,
}
benchmarks = {
'dna_no_match': dict(
subsequence = 'GCTAGCTAGCTA',
sequence = "ATCG" * (10**3),
max_dist = 1,
),
'dna_no_match2': dict(
subsequence = 'ATGATGATG',
sequence = 'ATCG' * (10**3),
max_dist = 2,
),
'random_kevin': dict(
subsequence = ''.join(random.choice('ATCG') for _i in xrange(36)),
sequence = ''.join(random.choice('ATCG' * 5 + 'N') for _i in xrange(90)),
max_dist = 3,
),
'random_kevin_partial_match': dict(
subsequence = 'AAGTCTAGT' + ''.join(random.choice('ATCG') for _i in xrange(36-9)),
sequence = 'AAGTCTAGT' + ''.join(random.choice('ATCG' * 5 + 'N') for _i in xrange(90-9)),
max_dist = 3,
),
}
def get_benchmark(search_func_name, benchmark_name):
search_func = search_functions[search_func_name]
search_args = dict(benchmarks[benchmark_name])
if search_func in (fnm_levenshtein_ngrams, fnm_levenshtein_lp, fnm_generic_lp, fnm_generic_lp_cython, fnm_generic_ngrams, hnm_generic_ngrams):
search_args['max_l_dist'] = search_args.pop('max_dist')
elif search_func in (fnm_substitutions_ngrams, fnm_substitutions_lp):
search_args['max_substitutions'] = search_args.pop('max_dist')
else:
raise Exception('Unsupported search function: %r' % search_func)
return search_func, search_args
def run_benchmark(search_func, search_args):
return search_func(**search_args)