A fuzzy matching & clustering library for python.
Go to file
Yomguithereal 7f917c596e Docs 2018-04-27 14:18:25 +02:00
fog Unit testing 2018-04-27 12:59:14 +02:00
test Unit testing 2018-04-27 12:59:14 +02:00
.gitignore Correct setup.py? 2018-04-27 14:09:49 +02:00
.travis.yml Initial commit 2018-04-26 17:40:12 +02:00
LICENSE.txt Initial commit 2018-04-26 17:40:12 +02:00
Makefile Fixing CI? 2018-04-27 14:12:42 +02:00
README.md Docs 2018-04-27 14:18:25 +02:00
requirements.txt Unit testing 2018-04-27 12:59:14 +02:00
setup.py Correct setup.py? 2018-04-27 14:09:49 +02:00

README.md

Build Status

Fog

A fuzzy matching/clustering library for Python.

Installation

You can install fog with pip with the following command:

pip install fog

Usage

Metrics

sparse_cosine_similarity

Computes the cosine similarity of two sparse weighted sets. Those sets have to be represented as counters.

from fog.metrics import sparse_cosine_similarity

# Basic
sparse_cosine_similarity({'apple': 34, 'pear': 3}, {'pear': 1, 'orange': 1})
>>> ~0.062

# Using custom key
A = {'apple': {'weight': 34}, 'pear': {'weight': 3}}
B = {'pear': {'weight': 1}, 'orange': {'weight': 1}}
sparse_cosine_similarity(A, B, key=lambda x: x['weight'])

Arguments

  • A Counter: first weighted set. Must be a dictionary mapping keys to weights.
  • B Counter: second weighted set. Muset be a dictionary mapping keys to weights.
  • key ?callable: Optional function retrieving the weight from values.