fog/README.md

78 lines
1.7 KiB
Markdown

[![Build Status](https://travis-ci.org/Yomguithereal/fog.svg)](https://travis-ci.org/Yomguithereal/fog)
# Fog
A fuzzy matching/clustering library for Python.
## Installation
You can install `fog` with pip with the following command:
```
pip install fog
```
## Usage
* [Metrics](#metrics)
- [sparse_cosine_similarity](#sparse_cosine_similarity)
- [jaccard_similarity](#jaccard_similarity)
- [weighted_jaccard_similarity](#weighted_jaccard_similarity)
### Metrics
#### sparse_cosine_similarity
Computes the cosine similarity of two sparse weighted sets. Those sets have to be represented as counters.
```python
from fog.metrics import sparse_cosine_similarity
# Basic
sparse_cosine_similarity({'apple': 34, 'pear': 3}, {'pear': 1, 'orange': 1})
>>> ~0.062
```
*Arguments*
* **A** *Counter*: first weighted set. Must be a dictionary mapping keys to weights.
* **B** *Counter*: second weighted set. Muset be a dictionary mapping keys to weights.
---
#### jaccard_similarity
Computes the Jaccard similarity of two arbitrary iterables.
```python
from fog.metrics import jaccard_similarity
# Basic
jaccard_similarity('context', 'contact')
>>> ~0.571
```
*Arguments*
* **A** *iterable*: first sequence to compare.
* **B** *iterable*: second sequence to compare.
---
#### weighted_jaccard_similarity
Computes the weighted Jaccard similarity of two weighted sets. Those sets have to be represented as counters.
```python
from fog.metrics import weighted_jaccard_similarity
# Basic
weighted_jaccard_similarity({'apple': 34, 'pear': 3}, {'pear': 1, 'orange': 1})
>>> ~0.026
```
*Arguments*
* **A** *Counter*: first weighted set. Must be a dictionary mapping keys to weights.
* **B** *Counter*: second weighted set. Muset be a dictionary mapping keys to weights.