Fixing bench

This commit is contained in:
Yomguithereal 2018-07-16 17:04:40 +02:00
parent 9b461ec41d
commit c394dd5ccf
2 changed files with 80 additions and 78 deletions

View File

@ -14,45 +14,45 @@ with open('./data/universities.csv', 'r') as f:
print('Universities: %i' % len(universities))
# start = timer()
# clusters = list(pairwise_leader(universities, distance=levenshtein, radius=2))
# print('Leader (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(pairwise_leader(universities, distance=levenshtein, radius=2))
print('Leader (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(pairwise_fuzzy_clusters(universities, distance=levenshtein, radius=2))
# print('Fuzzy clusters (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(pairwise_fuzzy_clusters(universities, distance=levenshtein, radius=2))
print('Fuzzy clusters (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(pairwise_connected_components(universities, distance=levenshtein, radius=2))
# print('Connected components (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(pairwise_connected_components(universities, distance=levenshtein, radius=2))
print('Connected components (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(vp_tree(universities, distance=levenshtein, radius=2))
# print('VPTree (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(vp_tree(universities, distance=levenshtein, radius=2))
print('VPTree (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(quickjoin(universities, distance=levenshtein, radius=2))
print('QuickJoin (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(nn_descent(universities, distance=levenshtein, radius=2))
# print('NN-Descent (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(nn_descent(universities, distance=levenshtein, radius=2))
print('NN-Descent (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(blocking(universities, blocks=partial(ngrams, 6), distance=levenshtein, radius=2))
# print('Blocking (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(blocking(universities, blocks=partial(ngrams, 6), distance=levenshtein, radius=2))
print('Blocking (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(sorted_neighborhood(universities, key=omission_key, distance=levenshtein, radius=2))
# print('SNM Omission (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(sorted_neighborhood(universities, key=omission_key, distance=levenshtein, radius=2))
print('SNM Omission (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(sorted_neighborhood(universities, key=skeleton_key, distance=levenshtein, radius=2))
# print('SNM Skeleton (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(sorted_neighborhood(universities, key=skeleton_key, distance=levenshtein, radius=2))
print('SNM Skeleton (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(sorted_neighborhood(universities, keys=[omission_key, skeleton_key], distance=levenshtein, radius=2))
# print('SNM Omission + Skeleton (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(sorted_neighborhood(universities, keys=[omission_key, skeleton_key], distance=levenshtein, radius=2))
print('SNM Omission + Skeleton (%i):' % len(clusters), timer() - start)
print()
with open('./data/musicians.csv', 'r') as f:
@ -62,63 +62,54 @@ with open('./data/musicians.csv', 'r') as f:
print('Artists: %i' % len(artists))
# start = timer()
# clusters = list(key_collision(artists, keys=lambda x: ngrams(12, x), merge=True))
# print('12-grams key collision (%i)' % len(clusters), timer() - start)
# start = timer()
# clusters = list(key_collision(artists, key=fingerprint))
# print('Fingerprint key collision (%i)' % len(clusters), timer() - start)
# start = timer()
# clusters = list(blocking(artists, blocks=partial(ngrams, 6), distance=levenshtein, radius=2, processes=8))
# print('Blocking (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(sorted_neighborhood(artists, key=omission_key, distance=levenshtein, radius=2))
# print('SNM Omission (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(sorted_neighborhood(artists, key=skeleton_key, distance=levenshtein, radius=2))
# print('SNM Skeleton (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(sorted_neighborhood(artists, keys=[omission_key, skeleton_key], distance=levenshtein, radius=2))
# print('SNM Omission + Skeleton (%i):' % len(clusters), timer() - start)
c = 0
g = len(artists) * (len(artists) - 1) / 2
def counting_levenshtein(a, b):
global c
c += 1
return levenshtein(a, b)
start = timer()
clusters = list(key_collision(artists, keys=lambda x: ngrams(12, x), merge=True))
print('12-grams key collision (%i)' % len(clusters), timer() - start)
start = timer()
clusters = list(quickjoin(artists, distance=counting_levenshtein, radius=2, processes=8))
clusters = list(key_collision(artists, key=fingerprint))
print('Fingerprint key collision (%i)' % len(clusters), timer() - start)
start = timer()
clusters = list(blocking(artists, blocks=partial(ngrams, 6), distance=levenshtein, radius=2, processes=8))
print('Blocking (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(sorted_neighborhood(artists, key=omission_key, distance=levenshtein, radius=2))
print('SNM Omission (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(sorted_neighborhood(artists, key=skeleton_key, distance=levenshtein, radius=2))
print('SNM Skeleton (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(sorted_neighborhood(artists, keys=[omission_key, skeleton_key], distance=levenshtein, radius=2))
print('SNM Omission + Skeleton (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(quickjoin(artists, distance=levenshtein, radius=2, processes=8))
print('QuickJoin (%i):' % len(clusters), timer() - start)
print('c', c, 'vs.', g, 'ratio', c / g)
# start = timer()
# clusters = list(nn_descent(artists, distance=levenshtein, radius=2))
# print('NN-Descent (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(nn_descent(artists, distance=levenshtein, radius=2))
print('NN-Descent (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(minhash(artists, radius=0.8, key=lambda x: list(ngrams(5, x)), use_numpy=True))
# print('MinHash (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(minhash(artists, radius=0.8, key=lambda x: list(ngrams(5, x)), use_numpy=True))
print('MinHash (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(jaccard_intersection_index(artists, radius=0.8, key=lambda x: list(ngrams(5, x))))
# print('Jaccard Intersection Index (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(jaccard_intersection_index(artists, radius=0.8, key=lambda x: list(ngrams(5, x))))
print('Jaccard Intersection Index (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(pairwise_fuzzy_clusters(artists, distance=levenshtein, radius=2, processes=8))
# print('Parallel Fuzzy clusters (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(pairwise_fuzzy_clusters(artists, distance=levenshtein, radius=2, processes=8))
print('Parallel Fuzzy clusters (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(pairwise_connected_components(artists, distance=levenshtein, radius=2, processes=8))
# print('Parallel connected components (%i):' % len(clusters), timer() - start)
start = timer()
clusters = list(pairwise_connected_components(artists, distance=levenshtein, radius=2, processes=8))
print('Parallel connected components (%i):' % len(clusters), timer() - start)
# start = timer()
# clusters = list(vp_tree(artists, distance=levenshtein, radius=2))
# print('VPTree clusters (%i)' % len(clusters), timer() - start)
start = timer()
clusters = list(vp_tree(artists, distance=levenshtein, radius=2))
print('VPTree clusters (%i)' % len(clusters), timer() - start)

View File

@ -16,6 +16,17 @@
# Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199.
# Springer, Berlin, Heidelberg
#
# [Notes]:
# From what I could gather right now, Fredriksson K., Braithwaite B. methods
# to improve the algorithm don't really work with my use-case. For instance,
# the book-keeping of the join_pivots methods takes more time than the
# saved distance computations, even with a eta parameter set to a high value.
# I will need to test examples where the distance is more expensive (e.g.,
# testing with quite tiny strings, the Levensthein distance is not really
# prohibitive right now).
#
# Using a Vantage Point Tree does not yield faster results neither.
#
import dill
import random
from multiprocessing import Pool