mirror of https://github.com/tqdm/tqdm.git
cliclosemberconsolediscordguijupyterkerasmeterpandasparallelprogressprogress-barprogressbarprogressmeterpythonratestarred-repostarred-tqdm-repotelegramterminaltimeutilities
dae8f31747 | ||
---|---|---|
examples | ||
tqdm | ||
.coveragerc | ||
.gitignore | ||
.mailmap | ||
.travis.yml | ||
CONTRIBUTE | ||
LICENCE | ||
MANIFEST.in | ||
Makefile | ||
README.rst | ||
RELEASE | ||
logo.png | ||
setup.cfg | ||
setup.py | ||
tox.ini | ||
tqdm.gif |
README.rst
|Logo| tqdm ==== |PyPi Status| |PyPi Downloads| |Build Status| |Coverage Status| |Branch Coverage Status| ``tqdm`` (read taqadum, تقدّم) means "progress" in arabic. Instantly make your loops show a smart progress meter - just wrap any iterable with "tqdm(iterable)", and you're done! .. code:: python from tqdm import tqdm for i in tqdm(range(9)): ... Here's what the output looks like: 76%\|████████████████████\ \| 7641/10000 [00:34<00:10, 222.22 it/s] ``trange(N)`` can be also used as a convenient shortcut for ``tqdm(xrange(N))``. |Screenshot| Overhead is low -- about 60ns per iteration (80ns with ``gui=True``), and is unit tested against performance regression. By comparison, the well established `ProgressBar <https://github.com/niltonvolpato/python-progressbar>`__ has an 800ns/iter overhead. In addition to its low overhead, ``tqdm`` uses smart algorithms to predict the remaining time and to skip unnecessary iteration displays, which allows for a negligible overhead in most cases. ``tqdm`` works on any platform (Linux, Windows, Mac, FreeBSD, Solaris/SunOS), in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks. ``tqdm`` does not require any library (not even curses!) to run, just a vanilla Python interpreter will do and an environment supporting ``carriage return \r`` and ``line feed \n`` control characters. ------------------------------------------ .. contents:: Table of contents :backlinks: top :local: Installation ------------ Latest pypi stable release ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: sh pip install tqdm Latest development release on github ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pull and install in the current directory: .. code:: sh pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm Changelog --------- The list of all changes is available either on `Github's Releases <https://github.com/tqdm/tqdm/releases>`_ or on crawlers such as `allmychanges.com <https://allmychanges.com/p/python/tqdm/>`_. Usage ----- ``tqdm`` is very versatile and can be used in a number of ways. The two main ones are given below. Iterable-based ~~~~~~~~~~~~~~ Wrap ``tqdm()`` around any iterable: .. code:: python text = "" for char in tqdm(["a", "b", "c", "d"]): text = text + char ``trange(i)`` is a special optimised instance of ``tqdm(range(i))``: .. code:: python for i in trange(100): pass Instantiation outside of the loop allows for manual control over ``tqdm()``: .. code:: python pbar = tqdm(["a", "b", "c", "d"]) for char in pbar: pbar.set_description("Processing %s" % char) Manual ~~~~~~ Manual control on ``tqdm()`` updates by using a ``with`` statement: .. code:: python with tqdm(total=100) as pbar: for i in range(10): pbar.update(10) If the optional variable ``total`` (or an iterable with ``len()``) is provided, predictive stats are displayed. ``with`` is also optional (you can just assign ``tqdm()`` to a variable, but in this case don't forget to ``del`` or ``close()`` at the end: .. code:: python pbar = tqdm(total=100) for i in range(10): pbar.update(10) pbar.close() Documentation ------------- .. code:: python class tqdm(object): """ Decorate an iterable object, returning an iterator which acts exactly like the original iterable, but prints a dynamically updating progressbar every time a value is requested. """ def __init__(self, iterable=None, desc=None, total=None, leave=True, file=sys.stderr, ncols=None, mininterval=0.1, maxinterval=10.0, miniters=None, ascii=None, disable=False, unit='it', unit_scale=False, dynamic_ncols=False, smoothing=0.3, bar_format=None, initial=0, position=None): Parameters ~~~~~~~~~~ * iterable : iterable, optional Iterable to decorate with a progressbar. Leave blank [default: None] to manually manage the updates. * desc : str, optional Prefix for the progressbar [default: None]. * total : int, optional The number of expected iterations. If not given, len(iterable) is used if possible. As a last resort, only basic progress statistics are displayed (no ETA, no progressbar). If `gui` is True and this parameter needs subsequent updating, specify an initial arbitrary large positive integer, e.g. int(9e9). * leave : bool, optional If [default: True], removes all traces of the progressbar upon termination of iteration. * file : `io.TextIOWrapper` or `io.StringIO`, optional Specifies where to output the progress messages [default: sys.stderr]. Uses `file.write(str)` and `file.flush()` methods. * ncols : int, optional The width of the entire output message. If specified, dynamically resizes the progressbar to stay within this bound. If [default: None], attempts to use environment width. The fallback is a meter width of 10 and no limit for the counter and statistics. If 0, will not print any meter (only stats). * mininterval : float, optional Minimum progress update interval, in seconds [default: 0.1]. * maxinterval : float, optional Maximum progress update interval, in seconds [default: 10.0]. * miniters : int, optional Minimum progress update interval, in iterations [default: None]. If specified, will set `mininterval` to 0. * ascii : bool, optional If [default: None] or false, use unicode (smooth blocks) to fill the meter. The fallback is to use ASCII characters `1-9 #`. * disable : bool Whether to disable the entire progressbar wrapper [default: False]. * unit : str, optional String that will be used to define the unit of each iteration [default: 'it']. * unit_scale : bool, optional If set, the number of iterations will be reduced/scaled automatically and a metric prefix following the International System of Units standard will be added (kilo, mega, etc.) [default: False]. * dynamic_ncols : bool, optional If set, constantly alters `ncols` to the environment (allowing for window resizes) [default: False]. * smoothing : float Exponential moving average smoothing factor for speed estimates (ignored in GUI mode). Ranges from 0 (average speed) to 1 (current/instantaneous speed) [default: 0.3]. * bar_format : str, optional Specify a custom bar string formatting. May impact performance. [default: '{l_bar}{bar}{r_bar}'], where l_bar is '{desc}{percentage:3.0f}%|' and r_bar is '| {n_fmt}/{total_fmt} [{elapsed_str}<{remaining_str}, {rate_fmt}]'. Possible vars: bar, n, n_fmt, total, total_fmt, percentage, rate, rate_fmt, elapsed, remaining, l_bar, r_bar, desc. * initial : int, optional The initial counter value. Useful when restarting a progress bar [default: 0]. * position : int, optional Specify the line offset to print this bar. Useful to manage multiple bars at once (eg, from threads). Returns ~~~~~~~ * out : decorated iterator. .. code:: python def update(self, n=1): """ Manually update the progress bar, useful for streams such as reading files. E.g.: >>> t = tqdm(total=filesize) # Initialise >>> for current_buffer in stream: ... ... ... t.update(len(current_buffer)) >>> t.close() The last line is highly recommended, but possibly not necessary if `t.update()` will be called in such a way that `filesize` will be exactly reached and printed. Parameters ---------- n : int Increment to add to the internal counter of iterations [default: 1]. """ def close(self): """ Cleanup and (if leave=False) close the progressbar. """ def trange(*args, **kwargs): """ A shortcut for tqdm(xrange(*args), **kwargs). On Python3+ range is used instead of xrange. """ class tqdm_gui(tqdm): """ Experimental GUI version of tqdm! """ def tgrange(*args, **kwargs): """ Experimental GUI version of trange! """ Examples and Advanced Usage --------------------------- See the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__ folder or import the module and run ``help()``. Hooks and callbacks ~~~~~~~~~~~~~~~~~~~ ``tqdm`` can easily support callbacks/hooks and manual updates. Here's an example with ``urllib``: **urllib.urlretrieve documentation** | [...] | If present, the hook function will be called once | on establishment of the network connection and once after each block read | thereafter. The hook will be passed three arguments; a count of blocks | transferred so far, a block size in bytes, and the total size of the file. | [...] .. code:: python import urllib from tqdm import tqdm def my_hook(t): """ Wraps tqdm instance. Don't forget to close() or __exit__() the tqdm instance once you're done with it (easiest using `with` syntax). Example ------- >>> with tqdm(...) as t: ... reporthook = my_hook(t) ... urllib.urlretrieve(..., reporthook=reporthook) """ last_b = [0] def inner(b=1, bsize=1, tsize=None): """ b : int, optional Number of blocks just transferred [default: 1]. bsize : int, optional Size of each block (in tqdm units) [default: 1]. tsize : int, optional Total size (in tqdm units). If [default: None] remains unchanged. """ if tsize is not None: t.total = tsize t.update((b - last_b[0]) * bsize) last_b[0] = b return inner eg_link = 'http://www.doc.ic.ac.uk/~cod11/matryoshka.zip' with tqdm(unit='B', unit_scale=True, leave=True, miniters=1, desc=eg_link.split('/')[-1]) as t: # all optional kwargs urllib.urlretrieve(eg_link, filename='/dev/null', reporthook=my_hook(t), data=None) It is recommend to use ``miniters=1`` whenever there is potentially large differences in iteration speed (e.g. downloading a file over a patchy connection). Pandas Integration ~~~~~~~~~~~~~~~~~~ Due to popular demand we've added support for ``pandas`` -- here's an example for ``DataFrameGroupBy.progress_apply``: .. code:: python import pandas as pd import numpy as np from tqdm import tqdm, tqdm_pandas df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) # Create and register a new `tqdm` instance with `pandas` # (can use tqdm_gui, optional kwargs, etc.) tqdm_pandas(tqdm()) # Now you can use `progress_apply` instead of `apply` df.groupby(0).progress_apply(lambda x: x**2) In case you're interested in how this works (and how to modify it for your own callbacks), see the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__ folder or import the module and run ``help()``. Nested progress bars ~~~~~~~~~~~~~~~~~~~~ ``tqdm`` supports nested progress bars. Here's an example: .. code:: python from tqdm import trange from time import sleep for i in trange(10, desc='1st loop'): for j in trange(5, desc='2nd loop', leave=False): for k in trange(100, desc='3nd loop'): sleep(0.01) On Windows `colorama <https://github.com/tartley/colorama>`__ will be used if available to produce a beautiful nested display. For manual control over positioning (e.g. for multi-threaded use), you may specify `position=n` where `n=0` for the outermost bar, `n=1` for the next, and so on. How to make a good progress bar ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A good progress bar is a useful progress bar. To be useful, ``tqdm`` displays statistics and uses smart algorithms to predict and automagically adapt to a variety of use cases with no or minimal configuration. However, there is one thing that ``tqdm`` cannot do: choose a pertinent progress indicator. To display a useful progress bar, it is very important that ``tqdm`` is supplied with the most pertinent progress indicator. This will reflect most accurately the current state of your program. Usually, a good way is to preprocess quickly to first evaluate the total amount of work to do before beginning the real processing. To illustrate the importance of a good progress indicator, take the following example: you want to walk through all files of a directory and process their contents with some external function: .. code:: python import os from tqdm import tqdm, trange from time import sleep def dosomething(buf): """Do something with the content of a file""" sleep(0.01) pass def walkdir(folder): """Walk through each files in a directory""" for dirpath, dirs, files in os.walk(folder): for filename in files: yield os.path.abspath(os.path.join(dirpath, filename)) def process_content_no_progress(inputpath, blocksize=1024): for filepath in walkdir(inputpath): with open(filepath, 'rb') as fh: buf = 1 while (buf): buf = fh.read(blocksize) dosomething(buf) ``process_content_no_progress()`` does the job, but does not show any information about the current progress, nor how long it will take. To quickly fix that using ``tqdm``, we can use this naive approach: .. code:: python def process_content_with_progress1(inputpath, blocksize=1024): for filepath in tqdm(walkdir(inputpath), leave=True): with open(filepath, 'rb') as fh: buf = 1 while (buf): buf = fh.read(blocksize) dosomething(buf) ``process_content_with_progress1()`` will load ``tqdm()``, but since the iterator does not provide any length (``os.walkdir()`` does not have a ``__len__()`` method for the total files count), there is only an indication of the current and past program state, no prediction: ``4it [00:03, 2.79it/s]`` The way to get predictive information is to know the total amount of work to be done. Since ``os.walkdir()`` cannot give us this information, we need to precompute this by ourselves: .. code:: python def process_content_with_progress2(inputpath, blocksize=1024): # Preprocess the total files count filecounter = 0 for dirpath, dirs, files in tqdm(os.walk(inputpath)): for filename in files: filecounter += 1 for filepath in tqdm(walkdir(inputpath), total=filecounter, leave=True): with open(filepath, 'rb') as fh: buf = 1 while (buf): buf = fh.read(blocksize) dosomething(buf) ``process_content_with_progress2()`` is better than the naive approach because now we have predictive information: 50%|██████████████████████\ \| 2/4 [00:00<00:00, 4.06it/s] However, the progress is not smooth: it increments in steps, 1 step being 1 file processed. The problem is that we do not just walk through files tree, but we process the files contents. Thus, if we stumble on one very large file which takes a great deal more time to process than other smaller files, the progress bar will still considers that file is of equal processing weight. To fix this, we should use another indicator than the files count: the total sum of all files sizes. This would be more pertinent since the data we process is the files' content, so there is a direct relation between size and content. Below we implement this approach using a manually updated ``tqdm`` bar, where ``tqdm`` will work on size, while the ``for`` loop works on files paths: .. code:: python def process_content_with_progress3(inputpath, blocksize=1024): # Preprocess the total files sizes sizecounter = 0 for dirpath, dirs, files in tqdm(os.walk(inputpath)): for filename in files: fullpath = os.path.abspath(os.path.join(dirpath, filename)) sizecounter += os.stat(fullpath).st_size # Load tqdm with size counter instead of files counter with tqdm(total=sizecounter, leave=True, unit='B', unit_scale=True) as pbar: for dirpath, dirs, files in os.walk(inputpath): for filename in files: fullpath = os.path.abspath(os.path.join(dirpath, filename)) with open(fullpath, 'rb') as fh: buf = 1 while (buf): buf = fh.read(blocksize) dosomething(buf) if buf: pbar.update(len(buf)) And here is the result: a much smoother progress bar with meaningful predicted time and statistics: 47%|██████████████████▍\ \| 152K/321K [00:03<00:03, 46.2KB/s] Contributions ------------- To run the testing suite please make sure tox (https://testrun.org/tox/latest/) is installed, then type ``tox`` from the command line. Where ``tox`` is unavailable, a Makefile-like setup is provided with the following command: .. code:: sh $ python setup.py make alltests To see all options, run: .. code:: sh $ python setup.py make See the `CONTRIBUTE <https://raw.githubusercontent.com/tqdm/tqdm/master/CONTRIBUTE>`__ file for more information. License ------- Multiple licences, mostly `MPLv2.0, MIT licences <https://raw.githubusercontent.com/tqdm/tqdm/master/LICENSE>`__. Authors ------- - Casper da Costa-Luis (casperdcl) - Stephen Larroque (lrq3000) - Hadrien Mary (hadim) - Noam Yorav-Raphael (noamraph)* - Ivan Ivanov (obiwanus) - Mikhail Korobov (kmike) `*` Original author .. |Logo| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/logo.png .. |Build Status| image:: https://travis-ci.org/tqdm/tqdm.svg?branch=master :target: https://travis-ci.org/tqdm/tqdm .. |Coverage Status| image:: https://coveralls.io/repos/tqdm/tqdm/badge.svg :target: https://coveralls.io/r/tqdm/tqdm .. |Branch Coverage Status| image:: https://codecov.io/github/tqdm/tqdm/coverage.svg?branch=master :target: https://codecov.io/github/tqdm/tqdm?branch=master .. |PyPi Status| image:: https://img.shields.io/pypi/v/tqdm.svg :target: https://pypi.python.org/pypi/tqdm .. |PyPi Downloads| image:: https://img.shields.io/pypi/dm/tqdm.svg :target: https://pypi.python.org/pypi/tqdm .. |Screenshot| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/tqdm.gif