import pandas as pd import numpy as np from tqdm.auto import tqdm df = pd.DataFrame(np.random.randint(0, 100, (100000, 6))) # Register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm` # (can use `tqdm.gui.tqdm`, `tqdm.notebook.tqdm`, optional kwargs, etc.) tqdm.pandas(desc="my bar!") # Now you can use `progress_apply` instead of `apply` # and `progress_map` instead of `map` df.progress_apply(lambda x: x**2) # can also groupby: # df.groupby(0).progress_apply(lambda x: x**2) # -- Source code for `tqdm_pandas` (really simple!) # def tqdm_pandas(t): # from pandas.core.frame import DataFrame # def inner(df, func, *args, **kwargs): # t.total = groups.size // len(groups) # def wrapper(*args, **kwargs): # t.update(1) # return func(*args, **kwargs) # result = df.apply(wrapper, *args, **kwargs) # t.close() # return result # DataFrame.progress_apply = inner