tqdm/tests/tests_keras.py

95 lines
2.7 KiB
Python
Raw Normal View History

2019-12-20 18:29:03 +00:00
from __future__ import division
2019-11-09 02:49:16 +00:00
from tqdm import tqdm
from .tests_tqdm import pretest_posttest # NOQA
from .tests_tqdm import importorskip, StringIO, closing
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
def test_keras():
"""Test tqdm.keras.TqdmCallback"""
2020-10-24 18:37:35 +00:00
TqdmCallback = importorskip("tqdm.keras").TqdmCallback
np = importorskip("numpy")
2020-10-24 18:36:45 +00:00
try:
2020-10-24 18:37:35 +00:00
import keras as K
except ImportError:
K = importorskip("tensorflow.keras")
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
# 1D autoencoder
dtype = np.float32
model = K.models.Sequential(
[K.layers.InputLayer((1, 1), dtype=dtype), K.layers.Conv1D(1, 1)]
)
model.compile("adam", "mse")
x = np.random.rand(100, 1, 1).astype(dtype)
batch_size = 10
batches = len(x) / batch_size
epochs = 5
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
with closing(StringIO()) as our_file:
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
class Tqdm(tqdm):
"""redirected I/O class"""
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
def __init__(self, *a, **k):
k.setdefault("file", our_file)
super(Tqdm, self).__init__(*a, **k)
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
# just epoch (no batch) progress
model.fit(
x,
x,
epochs=epochs,
batch_size=batch_size,
verbose=False,
callbacks=[
TqdmCallback(
epochs,
data_size=len(x),
batch_size=batch_size,
verbose=0,
tqdm_class=Tqdm,
)
],
)
res = our_file.getvalue()
assert "{epochs}/{epochs}".format(epochs=epochs) in res
assert "{batches}/{batches}".format(batches=batches) not in res
2019-11-09 02:49:16 +00:00
2020-10-24 18:36:45 +00:00
# full (epoch and batch) progress
our_file.seek(0)
our_file.truncate()
model.fit(
x,
x,
epochs=epochs,
batch_size=batch_size,
verbose=False,
callbacks=[
TqdmCallback(
epochs,
data_size=len(x),
batch_size=batch_size,
verbose=2,
tqdm_class=Tqdm,
)
],
)
res = our_file.getvalue()
assert "{epochs}/{epochs}".format(epochs=epochs) in res
assert "{batches}/{batches}".format(batches=batches) in res
2019-12-19 21:52:48 +00:00
2020-10-24 18:36:45 +00:00
# auto-detect epochs and batches
our_file.seek(0)
our_file.truncate()
model.fit(
x,
x,
epochs=epochs,
batch_size=batch_size,
verbose=False,
callbacks=[TqdmCallback(verbose=2, tqdm_class=Tqdm)],
)
res = our_file.getvalue()
assert "{epochs}/{epochs}".format(epochs=epochs) in res
assert "{batches}/{batches}".format(batches=batches) in res