tqdm/README.rst

627 lines
20 KiB
ReStructuredText
Raw Normal View History

2015-10-11 17:11:45 +00:00
|Logo|
tqdm
====
2015-11-28 18:29:53 +00:00
|PyPi Status| |PyPi Downloads|
|Build Status| |Coverage Status| |Branch Coverage Status|
2015-10-11 17:11:45 +00:00
``tqdm`` (read taqadum, تقدّم) means "progress" in arabic.
2015-10-11 17:11:45 +00:00
2015-12-05 15:44:27 +00:00
Instantly make your loops show a smart progress meter - just wrap any
2015-10-11 17:11:45 +00:00
iterable with "tqdm(iterable)", and you're done!
2015-10-11 17:18:30 +00:00
.. code:: python
from tqdm import tqdm
2015-10-12 16:30:24 +00:00
for i in tqdm(range(9)):
2015-10-11 17:18:30 +00:00
...
2015-10-11 17:11:45 +00:00
Here's what the output looks like:
2015-10-13 19:35:43 +00:00
76%\|████████████████████\             \| 7641/10000 [00:34<00:10,
2015-10-11 17:11:45 +00:00
222.22 it/s]
``trange(N)`` can be also used as a convenient shortcut for
``tqdm(xrange(N))``.
2015-10-11 17:11:45 +00:00
|Screenshot|
2016-04-03 18:36:56 +00:00
It can also be executed as a module with pipes:
.. code:: sh
$ seq 9999999 | tqdm --unit_scale True | wc -l
2016-04-03 18:36:56 +00:00
10.0Mit [00:02, 3.58Mit/s]
9999999
Overhead is low -- about 60ns per iteration (80ns with ``gui=True``), and is
unit tested against performance regression.
2015-10-11 17:11:45 +00:00
By comparison, the well established
`ProgressBar <https://github.com/niltonvolpato/python-progressbar>`__ has
2015-12-05 15:44:27 +00:00
an 800ns/iter overhead.
In addition to its low overhead, ``tqdm`` uses smart algorithms to predict
2015-12-25 10:15:34 +00:00
the remaining time and to skip unnecessary iteration displays, which allows
2015-12-05 15:44:27 +00:00
for a negligible overhead in most cases.
2015-10-11 17:11:45 +00:00
``tqdm`` works on any platform (Linux, Windows, Mac, FreeBSD, Solaris/SunOS),
in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks.
2015-10-23 21:52:26 +00:00
``tqdm`` does not require any library (not even curses!) to run, just a
vanilla Python interpreter will do and an environment supporting ``carriage
return \r`` and ``line feed \n`` control characters.
------------------------------------------
.. contents:: Table of contents
:backlinks: top
:local:
2015-10-12 16:30:24 +00:00
2015-10-11 17:11:45 +00:00
Installation
------------
2015-10-11 17:18:30 +00:00
Latest pypi stable release
~~~~~~~~~~~~~~~~~~~~~~~~~~
2015-10-11 17:11:45 +00:00
.. code:: sh
pip install tqdm
2015-10-11 17:18:30 +00:00
Latest development release on github
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pull and install in the current directory:
2015-10-11 17:29:33 +00:00
.. code:: sh
2015-10-11 17:11:45 +00:00
pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm
2015-10-12 16:30:24 +00:00
Changelog
---------
2016-01-25 07:55:34 +00:00
The list of all changes is available either on
2016-04-03 18:36:56 +00:00
`Github's Releases <https://github.com/tqdm/tqdm/releases>`_
or on crawlers such as
`allmychanges.com <https://allmychanges.com/p/python/tqdm/>`_.
Usage
2015-12-05 15:44:27 +00:00
-----
2015-12-05 15:44:27 +00:00
``tqdm`` is very versatile and can be used in a number of ways.
2016-04-03 18:36:56 +00:00
The three main ones are given below.
Iterable-based
~~~~~~~~~~~~~~
2015-12-05 15:44:27 +00:00
Wrap ``tqdm()`` around any iterable:
.. code:: python
2016-01-21 18:11:35 +00:00
text = ""
for char in tqdm(["a", "b", "c", "d"]):
2016-01-21 18:11:35 +00:00
text = text + char
2015-12-05 15:44:27 +00:00
``trange(i)`` is a special optimised instance of ``tqdm(range(i))``:
.. code:: python
for i in trange(100):
pass
2015-12-05 15:44:27 +00:00
Instantiation outside of the loop allows for manual control over ``tqdm()``:
.. code:: python
pbar = tqdm(["a", "b", "c", "d"])
for char in pbar:
pbar.set_description("Processing %s" % char)
Manual
2015-12-05 15:44:27 +00:00
~~~~~~
2015-12-05 15:44:27 +00:00
Manual control on ``tqdm()`` updates by using a ``with`` statement:
.. code:: python
with tqdm(total=100) as pbar:
for i in range(10):
pbar.update(10)
2015-12-05 15:44:27 +00:00
If the optional variable ``total`` (or an iterable with ``len()``) is
provided, predictive stats are displayed.
2015-12-05 15:44:27 +00:00
``with`` is also optional (you can just assign ``tqdm()`` to a variable,
2016-01-25 08:28:59 +00:00
but in this case don't forget to ``del`` or ``close()`` at the end:
.. code:: python
2015-12-25 10:15:34 +00:00
pbar = tqdm(total=100)
for i in range(10):
pbar.update(10)
pbar.close()
2015-10-12 16:30:24 +00:00
2016-04-03 18:36:56 +00:00
Module
~~~~~~
Perhaps the most wonderful use of ``tqdm`` is in a script or on the command
line. Simply inserting ``tqdm`` (or ``python -m tqdm``) between pipes will pass
through all ``stdin`` to ``stdout`` while printing progress to ``stderr``.
2016-04-03 18:36:56 +00:00
The example below demonstrated counting the number of lines in all python files
in the current directory, with timing information included.
.. code:: sh
$ time find . -name '*.py' -exec cat \{} \; | wc -l
857365
2016-04-03 18:36:56 +00:00
real 0m3.458s
user 0m0.274s
sys 0m3.325s
2016-04-03 18:36:56 +00:00
$ time find . -name '*.py' -exec cat \{} \; | tqdm | wc -l
857366it [00:03, 246471.31it/s]
857365
2016-04-03 18:36:56 +00:00
real 0m3.585s
user 0m0.862s
sys 0m3.358s
2016-04-03 18:36:56 +00:00
Note that the usual arguments for ``tqdm`` can also be specified.
2016-04-03 18:36:56 +00:00
.. code:: sh
$ find . -name '*.py' -exec cat \{} \; |
tqdm --unit loc --unit_scale True --total 857366 >> /dev/null
100%|███████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s]
2016-04-03 18:36:56 +00:00
2015-10-11 17:11:45 +00:00
Documentation
-------------
.. code:: python
2015-10-13 19:35:43 +00:00
class tqdm(object):
2015-10-18 21:11:35 +00:00
"""
Decorate an iterable object, returning an iterator which acts exactly
2015-12-25 10:15:34 +00:00
like the original iterable, but prints a dynamically updating
2015-10-18 21:11:35 +00:00
progressbar every time a value is requested.
"""
2016-01-25 08:28:59 +00:00
def __init__(self, iterable=None, desc=None, total=None, leave=True,
file=sys.stderr, ncols=None, mininterval=0.1,
maxinterval=10.0, miniters=None, ascii=None, disable=False,
unit='it', unit_scale=False, dynamic_ncols=False,
smoothing=0.3, bar_format=None, initial=0, position=None):
2015-11-09 12:25:11 +00:00
Parameters
~~~~~~~~~~
* iterable : iterable, optional
Iterable to decorate with a progressbar.
Leave blank [default: None] to manually manage the updates.
* desc : str, optional
Prefix for the progressbar [default: None].
* total : int, optional
2016-04-03 18:36:56 +00:00
The number of expected iterations. If [default: None], len(iterable)
2015-11-28 20:27:43 +00:00
is used if possible. As a last resort, only basic progress
2015-11-09 12:25:11 +00:00
statistics are displayed (no ETA, no progressbar). If `gui` is
True and this parameter needs subsequent updating, specify an
initial arbitrary large positive integer, e.g. int(9e9).
* leave : bool, optional
2016-04-08 15:45:01 +00:00
If [default: True], keeps all traces of the progressbar
2015-11-09 12:25:11 +00:00
upon termination of iteration.
* file : `io.TextIOWrapper` or `io.StringIO`, optional
Specifies where to output the progress messages
[default: sys.stderr]. Uses `file.write(str)` and `file.flush()`
methods.
* ncols : int, optional
2015-11-28 20:27:43 +00:00
The width of the entire output message. If specified,
dynamically resizes the progressbar to stay within this bound.
If [default: None], attempts to use environment width. The
fallback is a meter width of 10 and no limit for the counter and
2015-11-09 12:25:11 +00:00
statistics. If 0, will not print any meter (only stats).
* mininterval : float, optional
Minimum progress update interval, in seconds [default: 0.1].
2016-04-03 18:36:56 +00:00
* maxinterval : float, optional
Maximum progress update interval, in seconds [default: 10.0].
2015-11-09 12:25:11 +00:00
* miniters : int, optional
Minimum progress update interval, in iterations [default: None].
If specified, will set `mininterval` to 0.
* ascii : bool, optional
2016-04-03 18:36:56 +00:00
If [default: None] or False, use unicode (smooth blocks) to fill
2015-11-09 12:25:11 +00:00
the meter. The fallback is to use ASCII characters `1-9 #`.
2016-04-03 18:36:56 +00:00
* disable : bool
2015-11-28 20:27:43 +00:00
Whether to disable the entire progressbar wrapper
[default: False].
2015-11-09 12:25:11 +00:00
* unit : str, optional
String that will be used to define the unit of each iteration
2016-04-03 18:36:56 +00:00
[default: it].
2015-11-09 12:25:11 +00:00
* unit_scale : bool, optional
If set, the number of iterations will be reduced/scaled
automatically and a metric prefix following the
International System of Units standard will be added
(kilo, mega, etc.) [default: False].
* dynamic_ncols : bool, optional
If set, constantly alters `ncols` to the environment (allowing
for window resizes) [default: False].
* smoothing : float
Exponential moving average smoothing factor for speed estimates
2015-11-10 18:21:21 +00:00
(ignored in GUI mode). Ranges from 0 (average speed) to 1
2015-11-16 19:55:21 +00:00
(current/instantaneous speed) [default: 0.3].
2015-12-27 17:02:35 +00:00
* bar_format : str, optional
2015-12-27 05:31:52 +00:00
Specify a custom bar string formatting. May impact performance.
2016-04-03 18:36:56 +00:00
If [default: None], will use '{l_bar}{bar}{r_bar}', where l_bar is
2015-12-27 17:02:35 +00:00
'{desc}{percentage:3.0f}%|' and r_bar is
'| {n_fmt}/{total_fmt} [{elapsed_str}<{remaining_str}, {rate_fmt}]'.
2016-04-03 18:36:56 +00:00
Possible vars: bar, n, n_fmt, total, total_fmt, percentage,
rate, rate_fmt, elapsed, remaining, l_bar, r_bar, desc.
* initial : int, optional
The initial counter value. Useful when restarting a progress
bar [default: 0].
* position : int, optional
2016-04-03 18:36:56 +00:00
Specify the line offset to print this bar (starting from 0)
Automatic if [default: None].
Useful to manage multiple bars at once (eg, from threads).
2015-11-09 12:25:11 +00:00
Returns
~~~~~~~
* out : decorated iterator.
.. code:: python
2015-10-18 21:11:35 +00:00
def update(self, n=1):
"""
Manually update the progress bar, useful for streams
such as reading files.
E.g.:
>>> t = tqdm(total=filesize) # Initialise
>>> for current_buffer in stream:
... ...
... t.update(len(current_buffer))
>>> t.close()
The last line is highly recommended, but possibly not necessary if
`t.update()` will be called in such a way that `filesize` will be
exactly reached and printed.
Parameters
----------
n : int
Increment to add to the internal counter of iterations
[default: 1].
"""
def close(self):
"""
Cleanup and (if leave=False) close the progressbar.
"""
2015-10-11 17:11:45 +00:00
2015-11-11 20:19:55 +00:00
def trange(*args, **kwargs):
"""
A shortcut for tqdm(xrange(*args), **kwargs).
On Python3+ range is used instead of xrange.
"""
class tqdm_gui(tqdm):
"""
Experimental GUI version of tqdm!
"""
2015-11-11 20:19:55 +00:00
def tgrange(*args, **kwargs):
2015-10-11 17:11:45 +00:00
"""
2015-11-11 20:19:55 +00:00
Experimental GUI version of trange!
2015-10-11 17:11:45 +00:00
"""
2015-10-11 17:11:45 +00:00
Examples and Advanced Usage
---------------------------
2015-10-11 17:11:45 +00:00
2016-04-03 18:36:56 +00:00
See the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__
folder or import the module and run ``help()``.
2015-10-11 17:11:45 +00:00
2015-12-17 20:00:20 +00:00
Hooks and callbacks
~~~~~~~~~~~~~~~~~~~
``tqdm`` can easily support callbacks/hooks and manual updates.
Here's an example with ``urllib``:
**urllib.urlretrieve documentation**
| [...]
| If present, the hook function will be called once
| on establishment of the network connection and once after each
block read
| thereafter. The hook will be passed three arguments; a count of
blocks
| transferred so far, a block size in bytes, and the total size of
the file.
| [...]
.. code:: python
import urllib
from tqdm import tqdm
def my_hook(t):
"""
Wraps tqdm instance. Don't forget to close() or __exit__()
the tqdm instance once you're done with it (easiest using `with` syntax).
Example
-------
>>> with tqdm(...) as t:
... reporthook = my_hook(t)
... urllib.urlretrieve(..., reporthook=reporthook)
"""
last_b = [0]
def inner(b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks just transferred [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
t.total = tsize
t.update((b - last_b[0]) * bsize)
last_b[0] = b
return inner
eg_link = 'http://www.doc.ic.ac.uk/~cod11/matryoshka.zip'
with tqdm(unit='B', unit_scale=True, leave=True, miniters=1,
desc=eg_link.split('/')[-1]) as t: # all optional kwargs
urllib.urlretrieve(eg_link, filename='/dev/null',
reporthook=my_hook(t), data=None)
It is recommend to use ``miniters=1`` whenever there is potentially
large differences in iteration speed (e.g. downloading a file over
a patchy connection).
Pandas Integration
~~~~~~~~~~~~~~~~~~
Due to popular demand we've added support for ``pandas`` -- here's an example
for ``DataFrameGroupBy.progress_apply``:
.. code:: python
import pandas as pd
import numpy as np
from tqdm import tqdm, tqdm_pandas
df = pd.DataFrame(np.random.randint(0, 100, (100000, 6)))
# Create and register a new `tqdm` instance with `pandas`
# (can use tqdm_gui, optional kwargs, etc.)
tqdm_pandas(tqdm())
# Now you can use `progress_apply` instead of `apply`
df.groupby(0).progress_apply(lambda x: x**2)
In case you're interested in how this works (and how to modify it for your
2016-04-03 18:36:56 +00:00
own callbacks), see the
`examples <https://github.com/tqdm/tqdm/tree/master/examples>`__
2015-12-17 20:00:20 +00:00
folder or import the module and run ``help()``.
Nested progress bars
~~~~~~~~~~~~~~~~~~~~
``tqdm`` supports nested progress bars. Here's an example:
.. code:: python
from tqdm import trange
from time import sleep
2016-01-25 08:28:59 +00:00
for i in trange(10, desc='1st loop'):
for j in trange(5, desc='2nd loop', leave=False):
for k in trange(100, desc='3nd loop'):
sleep(0.01)
On Windows `colorama <https://github.com/tartley/colorama>`__ will be used if
available to produce a beautiful nested display.
For manual control over positioning (e.g. for multi-threaded use),
you may specify `position=n` where `n=0` for the outermost bar,
`n=1` for the next, and so on.
How to make a good progress bar
2015-12-17 20:00:20 +00:00
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A good progress bar is a useful progress bar. To be useful, ``tqdm`` displays
2015-12-17 20:00:20 +00:00
statistics and uses smart algorithms to predict and automagically adapt to
a variety of use cases with no or minimal configuration.
However, there is one thing that ``tqdm`` cannot do: choose a pertinent
progress indicator. To display a useful progress bar, it is very important that
2016-01-25 08:28:59 +00:00
``tqdm`` is supplied with the most pertinent progress indicator.
This will reflect most accurately the current state of your program.
Usually, a good way is to preprocess quickly to first evaluate the total amount
of work to do before beginning the real processing.
2016-01-25 08:28:59 +00:00
To illustrate the importance of a good progress indicator, take the
following example: you want to walk through all files of a directory and
2016-01-25 08:28:59 +00:00
process their contents with some external function:
.. code:: python
import os
from tqdm import tqdm, trange
from time import sleep
def dosomething(buf):
"""Do something with the content of a file"""
sleep(0.01)
pass
def walkdir(folder):
"""Walk through each files in a directory"""
for dirpath, dirs, files in os.walk(folder):
for filename in files:
yield os.path.abspath(os.path.join(dirpath, filename))
def process_content_no_progress(inputpath, blocksize=1024):
for filepath in walkdir(inputpath):
with open(filepath, 'rb') as fh:
buf = 1
while (buf):
buf = fh.read(blocksize)
dosomething(buf)
2016-01-25 08:28:59 +00:00
``process_content_no_progress()`` does the job, but does not show
any information about the current progress, nor how long it will take.
To quickly fix that using ``tqdm``, we can use this naive approach:
.. code:: python
def process_content_with_progress1(inputpath, blocksize=1024):
for filepath in tqdm(walkdir(inputpath), leave=True):
with open(filepath, 'rb') as fh:
buf = 1
while (buf):
buf = fh.read(blocksize)
dosomething(buf)
``process_content_with_progress1()`` will load ``tqdm()``, but since the
2015-12-17 20:00:20 +00:00
iterator does not provide any length (``os.walkdir()`` does not have a
``__len__()`` method for the total files count), there is only an indication
of the current and past program state, no prediction:
``4it [00:03, 2.79it/s]``
The way to get predictive information is to know the total amount of work to be
done. Since ``os.walkdir()`` cannot give us this information, we need to
precompute this by ourselves:
.. code:: python
def process_content_with_progress2(inputpath, blocksize=1024):
# Preprocess the total files count
filecounter = 0
for dirpath, dirs, files in tqdm(os.walk(inputpath)):
for filename in files:
filecounter += 1
for filepath in tqdm(walkdir(inputpath), total=filecounter, leave=True):
with open(filepath, 'rb') as fh:
buf = 1
while (buf):
buf = fh.read(blocksize)
dosomething(buf)
``process_content_with_progress2()`` is better than the naive approach because
now we have predictive information:
2016-04-23 12:51:20 +00:00
50%|████████████\             \| 2/4 [00:00<00:00, 4.06it/s]
However, the progress is not smooth: it increments in steps, 1 step being
1 file processed. The problem is that we do not just walk through files tree,
2016-01-25 08:28:59 +00:00
but we process the files contents. Thus, if we stumble on one very large file
which takes a great deal more time to process than other smaller files,
the progress bar
will still considers that file is of equal processing weight.
2015-12-17 20:00:20 +00:00
To fix this, we should use another indicator than the files count: the total
sum of all files sizes. This would be more pertinent since the data we
2015-12-17 20:00:20 +00:00
process is the files' content, so there is a direct relation between size and
content.
2015-12-17 20:00:20 +00:00
Below we implement this approach using a manually updated ``tqdm`` bar, where
``tqdm`` will work on size, while the ``for`` loop works on files paths:
.. code:: python
def process_content_with_progress3(inputpath, blocksize=1024):
# Preprocess the total files sizes
sizecounter = 0
for dirpath, dirs, files in tqdm(os.walk(inputpath)):
for filename in files:
fullpath = os.path.abspath(os.path.join(dirpath, filename))
2016-04-03 18:36:56 +00:00
sizecounter += os.stat(fullpath).st_size
# Load tqdm with size counter instead of files counter
with tqdm(total=sizecounter, leave=True, unit='B', unit_scale=True) as pbar:
for dirpath, dirs, files in os.walk(inputpath):
for filename in files:
fullpath = os.path.abspath(os.path.join(dirpath, filename))
with open(fullpath, 'rb') as fh:
buf = 1
while (buf):
buf = fh.read(blocksize)
dosomething(buf)
if buf: pbar.update(len(buf))
And here is the result: a much smoother progress bar with meaningful
predicted time and statistics:
2016-04-23 12:51:20 +00:00
47%|████████████\             \| 152K/321K [00:03<00:03, 46.2KB/s]
2016-01-25 08:28:59 +00:00
2015-10-11 17:11:45 +00:00
Contributions
-------------
To run the testing suite please make sure tox (https://testrun.org/tox/latest/)
2015-10-11 17:11:45 +00:00
is installed, then type ``tox`` from the command line.
2015-12-05 15:44:27 +00:00
Where ``tox`` is unavailable, a Makefile-like setup is
provided with the following command:
2015-10-11 17:11:45 +00:00
.. code:: sh
$ python setup.py make alltests
2015-10-11 17:11:45 +00:00
2015-12-05 15:44:27 +00:00
To see all options, run:
.. code:: sh
$ python setup.py make
2016-04-03 18:36:56 +00:00
See the
`CONTRIBUTE <https://raw.githubusercontent.com/tqdm/tqdm/master/CONTRIBUTE>`__
file for more information.
2015-10-11 17:11:45 +00:00
2015-10-12 16:30:24 +00:00
2015-10-11 17:11:45 +00:00
License
-------
Multiple licences, mostly `MPLv2.0, MIT licences <https://raw.githubusercontent.com/tqdm/tqdm/master/LICENCE>`__.
2015-10-11 17:11:45 +00:00
2015-10-12 16:30:24 +00:00
2015-10-11 17:11:45 +00:00
Authors
-------
- Casper da Costa-Luis (casperdcl)
- Stephen Larroque (lrq3000)
2015-10-18 21:11:35 +00:00
- Hadrien Mary (hadim)
- Noam Yorav-Raphael (noamraph)*
- Ivan Ivanov (obiwanus)
- Mikhail Korobov (kmike)
`*` Original author
2015-10-11 17:11:45 +00:00
.. |Logo| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/logo.png
2015-10-11 17:11:45 +00:00
.. |Build Status| image:: https://travis-ci.org/tqdm/tqdm.svg?branch=master
:target: https://travis-ci.org/tqdm/tqdm
.. |Coverage Status| image:: https://coveralls.io/repos/tqdm/tqdm/badge.svg
:target: https://coveralls.io/r/tqdm/tqdm
.. |Branch Coverage Status| image:: https://codecov.io/github/tqdm/tqdm/coverage.svg?branch=master
:target: https://codecov.io/github/tqdm/tqdm?branch=master
.. |PyPi Status| image:: https://img.shields.io/pypi/v/tqdm.svg
:target: https://pypi.python.org/pypi/tqdm
.. |PyPi Downloads| image:: https://img.shields.io/pypi/dm/tqdm.svg
:target: https://pypi.python.org/pypi/tqdm
.. |Screenshot| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/tqdm.gif