2015-10-11 17:11:45 +00:00
|
|
|
|
|Logo|
|
|
|
|
|
|
|
|
|
|
tqdm
|
|
|
|
|
====
|
|
|
|
|
|
2015-11-28 18:29:53 +00:00
|
|
|
|
|PyPi Status| |PyPi Downloads|
|
|
|
|
|
|Build Status| |Coverage Status| |Branch Coverage Status|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-11-09 12:14:07 +00:00
|
|
|
|
``tqdm`` (read taqadum, تقدّم) means "progress" in arabic.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
Instantly make your loops show a smart progress meter - just wrap any
|
2015-10-11 17:11:45 +00:00
|
|
|
|
iterable with "tqdm(iterable)", and you're done!
|
|
|
|
|
|
2015-10-11 17:18:30 +00:00
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm
|
2015-10-12 16:30:24 +00:00
|
|
|
|
for i in tqdm(range(9)):
|
2015-10-11 17:18:30 +00:00
|
|
|
|
...
|
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
Here's what the output looks like:
|
|
|
|
|
|
2015-10-13 19:35:43 +00:00
|
|
|
|
76%\|████████████████████\ \| 7641/10000 [00:34<00:10,
|
2015-10-11 17:11:45 +00:00
|
|
|
|
222.22 it/s]
|
|
|
|
|
|
2015-11-09 12:14:07 +00:00
|
|
|
|
``trange(N)`` can be also used as a convenient shortcut for
|
|
|
|
|
``tqdm(xrange(N))``.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
|
|
|
|
|Screenshot|
|
|
|
|
|
|
2016-04-03 18:36:56 +00:00
|
|
|
|
It can also be executed as a module with pipes:
|
|
|
|
|
|
|
|
|
|
.. code:: sh
|
|
|
|
|
|
2016-04-03 20:18:49 +00:00
|
|
|
|
$ seq 9999999 | tqdm --unit_scale True | wc -l
|
2016-04-03 18:36:56 +00:00
|
|
|
|
10.0Mit [00:02, 3.58Mit/s]
|
|
|
|
|
9999999
|
|
|
|
|
|
2015-12-26 04:33:34 +00:00
|
|
|
|
Overhead is low -- about 60ns per iteration (80ns with ``gui=True``), and is
|
|
|
|
|
unit tested against performance regression.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
By comparison, the well established
|
2015-12-23 16:12:50 +00:00
|
|
|
|
`ProgressBar <https://github.com/niltonvolpato/python-progressbar>`__ has
|
2015-12-05 15:44:27 +00:00
|
|
|
|
an 800ns/iter overhead.
|
|
|
|
|
|
|
|
|
|
In addition to its low overhead, ``tqdm`` uses smart algorithms to predict
|
2015-12-25 10:15:34 +00:00
|
|
|
|
the remaining time and to skip unnecessary iteration displays, which allows
|
2015-12-05 15:44:27 +00:00
|
|
|
|
for a negligible overhead in most cases.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-12-29 15:37:02 +00:00
|
|
|
|
``tqdm`` works on any platform (Linux, Windows, Mac, FreeBSD, Solaris/SunOS),
|
|
|
|
|
in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks.
|
2015-10-23 21:52:26 +00:00
|
|
|
|
|
2015-12-17 20:53:39 +00:00
|
|
|
|
``tqdm`` does not require any library (not even curses!) to run, just a
|
2015-12-26 04:33:34 +00:00
|
|
|
|
vanilla Python interpreter will do and an environment supporting ``carriage
|
|
|
|
|
return \r`` and ``line feed \n`` control characters.
|
2015-12-01 20:11:07 +00:00
|
|
|
|
|
2015-12-03 02:11:31 +00:00
|
|
|
|
------------------------------------------
|
|
|
|
|
|
|
|
|
|
.. contents:: Table of contents
|
|
|
|
|
:backlinks: top
|
2015-12-03 02:15:46 +00:00
|
|
|
|
:local:
|
2015-10-12 16:30:24 +00:00
|
|
|
|
|
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
Installation
|
|
|
|
|
------------
|
|
|
|
|
|
2015-10-11 17:18:30 +00:00
|
|
|
|
Latest pypi stable release
|
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
.. code:: sh
|
|
|
|
|
|
|
|
|
|
pip install tqdm
|
2015-10-11 17:18:30 +00:00
|
|
|
|
|
|
|
|
|
Latest development release on github
|
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
|
|
Pull and install in the current directory:
|
|
|
|
|
|
2015-10-11 17:29:33 +00:00
|
|
|
|
.. code:: sh
|
2015-10-11 20:07:12 +00:00
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm
|
|
|
|
|
|
2015-10-12 16:30:24 +00:00
|
|
|
|
|
2016-01-23 01:10:19 +00:00
|
|
|
|
Changelog
|
|
|
|
|
---------
|
2016-01-25 07:55:34 +00:00
|
|
|
|
|
2016-01-23 01:10:19 +00:00
|
|
|
|
The list of all changes is available either on
|
2016-04-03 18:36:56 +00:00
|
|
|
|
`Github's Releases <https://github.com/tqdm/tqdm/releases>`_
|
|
|
|
|
or on crawlers such as
|
2016-01-23 01:10:19 +00:00
|
|
|
|
`allmychanges.com <https://allmychanges.com/p/python/tqdm/>`_.
|
|
|
|
|
|
|
|
|
|
|
2015-12-03 01:22:18 +00:00
|
|
|
|
Usage
|
2015-12-05 15:44:27 +00:00
|
|
|
|
-----
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
``tqdm`` is very versatile and can be used in a number of ways.
|
2016-04-03 18:36:56 +00:00
|
|
|
|
The three main ones are given below.
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
Iterable-based
|
|
|
|
|
~~~~~~~~~~~~~~
|
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
Wrap ``tqdm()`` around any iterable:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
2016-01-21 18:11:35 +00:00
|
|
|
|
text = ""
|
2015-12-03 01:22:18 +00:00
|
|
|
|
for char in tqdm(["a", "b", "c", "d"]):
|
2016-01-21 18:11:35 +00:00
|
|
|
|
text = text + char
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
``trange(i)`` is a special optimised instance of ``tqdm(range(i))``:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
for i in trange(100):
|
|
|
|
|
pass
|
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
Instantiation outside of the loop allows for manual control over ``tqdm()``:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
pbar = tqdm(["a", "b", "c", "d"])
|
|
|
|
|
for char in pbar:
|
|
|
|
|
pbar.set_description("Processing %s" % char)
|
|
|
|
|
|
|
|
|
|
Manual
|
2015-12-05 15:44:27 +00:00
|
|
|
|
~~~~~~
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
Manual control on ``tqdm()`` updates by using a ``with`` statement:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
with tqdm(total=100) as pbar:
|
|
|
|
|
for i in range(10):
|
|
|
|
|
pbar.update(10)
|
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
If the optional variable ``total`` (or an iterable with ``len()``) is
|
|
|
|
|
provided, predictive stats are displayed.
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
``with`` is also optional (you can just assign ``tqdm()`` to a variable,
|
2016-01-25 08:28:59 +00:00
|
|
|
|
but in this case don't forget to ``del`` or ``close()`` at the end:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
2015-12-25 10:15:34 +00:00
|
|
|
|
pbar = tqdm(total=100)
|
2015-12-03 01:22:18 +00:00
|
|
|
|
for i in range(10):
|
|
|
|
|
pbar.update(10)
|
|
|
|
|
pbar.close()
|
2015-10-12 16:30:24 +00:00
|
|
|
|
|
2015-12-17 20:58:01 +00:00
|
|
|
|
|
2016-04-03 18:36:56 +00:00
|
|
|
|
Module
|
|
|
|
|
~~~~~~
|
|
|
|
|
|
2016-04-03 20:18:49 +00:00
|
|
|
|
Perhaps the most wonderful use of ``tqdm`` is in a script or on the command
|
|
|
|
|
line. Simply inserting ``tqdm`` (or ``python -m tqdm``) between pipes will pass
|
|
|
|
|
through all ``stdin`` to ``stdout`` while printing progress to ``stderr``.
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
|
|
|
|
The example below demonstrated counting the number of lines in all python files
|
|
|
|
|
in the current directory, with timing information included.
|
|
|
|
|
|
|
|
|
|
.. code:: sh
|
|
|
|
|
|
|
|
|
|
$ time find . -name '*.py' -exec cat \{} \; | wc -l
|
2016-04-03 20:18:49 +00:00
|
|
|
|
857365
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
2016-04-03 20:18:49 +00:00
|
|
|
|
real 0m3.458s
|
|
|
|
|
user 0m0.274s
|
|
|
|
|
sys 0m3.325s
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
2016-04-03 20:18:49 +00:00
|
|
|
|
$ time find . -name '*.py' -exec cat \{} \; | tqdm | wc -l
|
|
|
|
|
857366it [00:03, 246471.31it/s]
|
|
|
|
|
857365
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
2016-04-03 20:18:49 +00:00
|
|
|
|
real 0m3.585s
|
|
|
|
|
user 0m0.862s
|
|
|
|
|
sys 0m3.358s
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
2016-04-03 20:18:49 +00:00
|
|
|
|
Note that the usual arguments for ``tqdm`` can also be specified.
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
|
|
|
|
.. code:: sh
|
|
|
|
|
|
|
|
|
|
$ find . -name '*.py' -exec cat \{} \; |
|
2016-04-03 20:18:49 +00:00
|
|
|
|
tqdm --unit loc --unit_scale True --total 857366 >> /dev/null
|
|
|
|
|
100%|███████████████████████████████████| 857K/857K [00:04<00:00, 246Kloc/s]
|
2016-04-03 18:36:56 +00:00
|
|
|
|
|
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
Documentation
|
|
|
|
|
-------------
|
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
2015-10-13 19:35:43 +00:00
|
|
|
|
class tqdm(object):
|
2015-10-18 21:11:35 +00:00
|
|
|
|
"""
|
|
|
|
|
Decorate an iterable object, returning an iterator which acts exactly
|
2015-12-25 10:15:34 +00:00
|
|
|
|
like the original iterable, but prints a dynamically updating
|
2015-10-18 21:11:35 +00:00
|
|
|
|
progressbar every time a value is requested.
|
|
|
|
|
"""
|
|
|
|
|
|
2016-01-25 08:28:59 +00:00
|
|
|
|
def __init__(self, iterable=None, desc=None, total=None, leave=True,
|
2015-12-27 17:43:46 +00:00
|
|
|
|
file=sys.stderr, ncols=None, mininterval=0.1,
|
2016-01-22 22:51:37 +00:00
|
|
|
|
maxinterval=10.0, miniters=None, ascii=None, disable=False,
|
|
|
|
|
unit='it', unit_scale=False, dynamic_ncols=False,
|
|
|
|
|
smoothing=0.3, bar_format=None, initial=0, position=None):
|
2015-11-09 12:25:11 +00:00
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
~~~~~~~~~~
|
|
|
|
|
|
|
|
|
|
* iterable : iterable, optional
|
|
|
|
|
Iterable to decorate with a progressbar.
|
|
|
|
|
Leave blank [default: None] to manually manage the updates.
|
|
|
|
|
* desc : str, optional
|
|
|
|
|
Prefix for the progressbar [default: None].
|
|
|
|
|
* total : int, optional
|
2016-04-03 18:36:56 +00:00
|
|
|
|
The number of expected iterations. If [default: None], len(iterable)
|
2015-11-28 20:27:43 +00:00
|
|
|
|
is used if possible. As a last resort, only basic progress
|
2015-11-09 12:25:11 +00:00
|
|
|
|
statistics are displayed (no ETA, no progressbar). If `gui` is
|
|
|
|
|
True and this parameter needs subsequent updating, specify an
|
|
|
|
|
initial arbitrary large positive integer, e.g. int(9e9).
|
|
|
|
|
* leave : bool, optional
|
2016-04-08 15:45:01 +00:00
|
|
|
|
If [default: True], keeps all traces of the progressbar
|
2015-11-09 12:25:11 +00:00
|
|
|
|
upon termination of iteration.
|
|
|
|
|
* file : `io.TextIOWrapper` or `io.StringIO`, optional
|
|
|
|
|
Specifies where to output the progress messages
|
|
|
|
|
[default: sys.stderr]. Uses `file.write(str)` and `file.flush()`
|
|
|
|
|
methods.
|
|
|
|
|
* ncols : int, optional
|
2015-11-28 20:27:43 +00:00
|
|
|
|
The width of the entire output message. If specified,
|
|
|
|
|
dynamically resizes the progressbar to stay within this bound.
|
|
|
|
|
If [default: None], attempts to use environment width. The
|
|
|
|
|
fallback is a meter width of 10 and no limit for the counter and
|
2015-11-09 12:25:11 +00:00
|
|
|
|
statistics. If 0, will not print any meter (only stats).
|
|
|
|
|
* mininterval : float, optional
|
|
|
|
|
Minimum progress update interval, in seconds [default: 0.1].
|
2016-04-03 18:36:56 +00:00
|
|
|
|
* maxinterval : float, optional
|
2015-11-28 02:35:46 +00:00
|
|
|
|
Maximum progress update interval, in seconds [default: 10.0].
|
2015-11-09 12:25:11 +00:00
|
|
|
|
* miniters : int, optional
|
|
|
|
|
Minimum progress update interval, in iterations [default: None].
|
|
|
|
|
If specified, will set `mininterval` to 0.
|
|
|
|
|
* ascii : bool, optional
|
2016-04-03 18:36:56 +00:00
|
|
|
|
If [default: None] or False, use unicode (smooth blocks) to fill
|
2015-11-09 12:25:11 +00:00
|
|
|
|
the meter. The fallback is to use ASCII characters `1-9 #`.
|
2016-04-03 18:36:56 +00:00
|
|
|
|
* disable : bool
|
2015-11-28 20:27:43 +00:00
|
|
|
|
Whether to disable the entire progressbar wrapper
|
|
|
|
|
[default: False].
|
2015-11-09 12:25:11 +00:00
|
|
|
|
* unit : str, optional
|
|
|
|
|
String that will be used to define the unit of each iteration
|
2016-04-03 18:36:56 +00:00
|
|
|
|
[default: it].
|
2015-11-09 12:25:11 +00:00
|
|
|
|
* unit_scale : bool, optional
|
|
|
|
|
If set, the number of iterations will be reduced/scaled
|
|
|
|
|
automatically and a metric prefix following the
|
|
|
|
|
International System of Units standard will be added
|
|
|
|
|
(kilo, mega, etc.) [default: False].
|
|
|
|
|
* dynamic_ncols : bool, optional
|
|
|
|
|
If set, constantly alters `ncols` to the environment (allowing
|
|
|
|
|
for window resizes) [default: False].
|
|
|
|
|
* smoothing : float
|
|
|
|
|
Exponential moving average smoothing factor for speed estimates
|
2015-11-10 18:21:21 +00:00
|
|
|
|
(ignored in GUI mode). Ranges from 0 (average speed) to 1
|
2015-11-16 19:55:21 +00:00
|
|
|
|
(current/instantaneous speed) [default: 0.3].
|
2015-12-27 17:02:35 +00:00
|
|
|
|
* bar_format : str, optional
|
2015-12-27 05:31:52 +00:00
|
|
|
|
Specify a custom bar string formatting. May impact performance.
|
2016-04-03 18:36:56 +00:00
|
|
|
|
If [default: None], will use '{l_bar}{bar}{r_bar}', where l_bar is
|
2015-12-27 17:02:35 +00:00
|
|
|
|
'{desc}{percentage:3.0f}%|' and r_bar is
|
|
|
|
|
'| {n_fmt}/{total_fmt} [{elapsed_str}<{remaining_str}, {rate_fmt}]'.
|
2016-04-03 18:36:56 +00:00
|
|
|
|
Possible vars: bar, n, n_fmt, total, total_fmt, percentage,
|
|
|
|
|
rate, rate_fmt, elapsed, remaining, l_bar, r_bar, desc.
|
|
|
|
|
* initial : int, optional
|
2015-12-27 17:43:46 +00:00
|
|
|
|
The initial counter value. Useful when restarting a progress
|
|
|
|
|
bar [default: 0].
|
2015-12-27 15:26:08 +00:00
|
|
|
|
* position : int, optional
|
2016-04-03 18:36:56 +00:00
|
|
|
|
Specify the line offset to print this bar (starting from 0)
|
|
|
|
|
Automatic if [default: None].
|
|
|
|
|
Useful to manage multiple bars at once (eg, from threads).
|
2015-11-09 12:25:11 +00:00
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
~~~~~~~
|
|
|
|
|
|
|
|
|
|
* out : decorated iterator.
|
|
|
|
|
|
|
|
|
|
.. code:: python
|
2015-10-18 21:11:35 +00:00
|
|
|
|
|
|
|
|
|
def update(self, n=1):
|
|
|
|
|
"""
|
|
|
|
|
Manually update the progress bar, useful for streams
|
|
|
|
|
such as reading files.
|
|
|
|
|
E.g.:
|
|
|
|
|
>>> t = tqdm(total=filesize) # Initialise
|
|
|
|
|
>>> for current_buffer in stream:
|
|
|
|
|
... ...
|
|
|
|
|
... t.update(len(current_buffer))
|
|
|
|
|
>>> t.close()
|
|
|
|
|
The last line is highly recommended, but possibly not necessary if
|
|
|
|
|
`t.update()` will be called in such a way that `filesize` will be
|
|
|
|
|
exactly reached and printed.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
n : int
|
|
|
|
|
Increment to add to the internal counter of iterations
|
|
|
|
|
[default: 1].
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def close(self):
|
|
|
|
|
"""
|
|
|
|
|
Cleanup and (if leave=False) close the progressbar.
|
|
|
|
|
"""
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-11-11 20:19:55 +00:00
|
|
|
|
def trange(*args, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
A shortcut for tqdm(xrange(*args), **kwargs).
|
|
|
|
|
On Python3+ range is used instead of xrange.
|
|
|
|
|
"""
|
|
|
|
|
|
2015-11-11 10:23:20 +00:00
|
|
|
|
class tqdm_gui(tqdm):
|
|
|
|
|
"""
|
|
|
|
|
Experimental GUI version of tqdm!
|
|
|
|
|
"""
|
|
|
|
|
|
2015-11-11 20:19:55 +00:00
|
|
|
|
def tgrange(*args, **kwargs):
|
2015-10-11 17:11:45 +00:00
|
|
|
|
"""
|
2015-11-11 20:19:55 +00:00
|
|
|
|
Experimental GUI version of trange!
|
2015-10-11 17:11:45 +00:00
|
|
|
|
"""
|
|
|
|
|
|
2015-12-17 20:53:39 +00:00
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
Examples and Advanced Usage
|
2015-11-30 23:14:29 +00:00
|
|
|
|
---------------------------
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2016-04-03 18:36:56 +00:00
|
|
|
|
See the `examples <https://github.com/tqdm/tqdm/tree/master/examples>`__
|
|
|
|
|
folder or import the module and run ``help()``.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-12-17 20:00:20 +00:00
|
|
|
|
Hooks and callbacks
|
|
|
|
|
~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
|
|
``tqdm`` can easily support callbacks/hooks and manual updates.
|
|
|
|
|
Here's an example with ``urllib``:
|
|
|
|
|
|
|
|
|
|
**urllib.urlretrieve documentation**
|
|
|
|
|
|
|
|
|
|
| [...]
|
|
|
|
|
| If present, the hook function will be called once
|
|
|
|
|
| on establishment of the network connection and once after each
|
|
|
|
|
block read
|
|
|
|
|
| thereafter. The hook will be passed three arguments; a count of
|
|
|
|
|
blocks
|
|
|
|
|
| transferred so far, a block size in bytes, and the total size of
|
|
|
|
|
the file.
|
|
|
|
|
| [...]
|
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
import urllib
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
def my_hook(t):
|
|
|
|
|
"""
|
|
|
|
|
Wraps tqdm instance. Don't forget to close() or __exit__()
|
|
|
|
|
the tqdm instance once you're done with it (easiest using `with` syntax).
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
|
|
>>> with tqdm(...) as t:
|
|
|
|
|
... reporthook = my_hook(t)
|
|
|
|
|
... urllib.urlretrieve(..., reporthook=reporthook)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
last_b = [0]
|
|
|
|
|
|
|
|
|
|
def inner(b=1, bsize=1, tsize=None):
|
|
|
|
|
"""
|
|
|
|
|
b : int, optional
|
|
|
|
|
Number of blocks just transferred [default: 1].
|
|
|
|
|
bsize : int, optional
|
|
|
|
|
Size of each block (in tqdm units) [default: 1].
|
|
|
|
|
tsize : int, optional
|
|
|
|
|
Total size (in tqdm units). If [default: None] remains unchanged.
|
|
|
|
|
"""
|
|
|
|
|
if tsize is not None:
|
|
|
|
|
t.total = tsize
|
|
|
|
|
t.update((b - last_b[0]) * bsize)
|
|
|
|
|
last_b[0] = b
|
|
|
|
|
return inner
|
|
|
|
|
|
|
|
|
|
eg_link = 'http://www.doc.ic.ac.uk/~cod11/matryoshka.zip'
|
|
|
|
|
with tqdm(unit='B', unit_scale=True, leave=True, miniters=1,
|
|
|
|
|
desc=eg_link.split('/')[-1]) as t: # all optional kwargs
|
|
|
|
|
urllib.urlretrieve(eg_link, filename='/dev/null',
|
|
|
|
|
reporthook=my_hook(t), data=None)
|
|
|
|
|
|
|
|
|
|
It is recommend to use ``miniters=1`` whenever there is potentially
|
|
|
|
|
large differences in iteration speed (e.g. downloading a file over
|
|
|
|
|
a patchy connection).
|
|
|
|
|
|
|
|
|
|
Pandas Integration
|
|
|
|
|
~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
|
|
|
|
Due to popular demand we've added support for ``pandas`` -- here's an example
|
|
|
|
|
for ``DataFrameGroupBy.progress_apply``:
|
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
from tqdm import tqdm, tqdm_pandas
|
|
|
|
|
|
|
|
|
|
df = pd.DataFrame(np.random.randint(0, 100, (100000, 6)))
|
|
|
|
|
|
|
|
|
|
# Create and register a new `tqdm` instance with `pandas`
|
|
|
|
|
# (can use tqdm_gui, optional kwargs, etc.)
|
|
|
|
|
tqdm_pandas(tqdm())
|
|
|
|
|
|
|
|
|
|
# Now you can use `progress_apply` instead of `apply`
|
|
|
|
|
df.groupby(0).progress_apply(lambda x: x**2)
|
|
|
|
|
|
|
|
|
|
In case you're interested in how this works (and how to modify it for your
|
2016-04-03 18:36:56 +00:00
|
|
|
|
own callbacks), see the
|
|
|
|
|
`examples <https://github.com/tqdm/tqdm/tree/master/examples>`__
|
2015-12-17 20:00:20 +00:00
|
|
|
|
folder or import the module and run ``help()``.
|
|
|
|
|
|
2015-12-01 20:11:07 +00:00
|
|
|
|
Nested progress bars
|
|
|
|
|
~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
2016-01-22 22:51:37 +00:00
|
|
|
|
``tqdm`` supports nested progress bars. Here's an example:
|
2015-12-02 18:28:35 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
from tqdm import trange
|
|
|
|
|
from time import sleep
|
|
|
|
|
|
2016-01-25 08:28:59 +00:00
|
|
|
|
for i in trange(10, desc='1st loop'):
|
2016-01-25 09:39:06 +00:00
|
|
|
|
for j in trange(5, desc='2nd loop', leave=False):
|
|
|
|
|
for k in trange(100, desc='3nd loop'):
|
2015-12-02 18:28:35 +00:00
|
|
|
|
sleep(0.01)
|
|
|
|
|
|
2015-12-17 20:53:39 +00:00
|
|
|
|
On Windows `colorama <https://github.com/tartley/colorama>`__ will be used if
|
|
|
|
|
available to produce a beautiful nested display.
|
|
|
|
|
|
2016-01-22 22:51:37 +00:00
|
|
|
|
For manual control over positioning (e.g. for multi-threaded use),
|
|
|
|
|
you may specify `position=n` where `n=0` for the outermost bar,
|
|
|
|
|
`n=1` for the next, and so on.
|
|
|
|
|
|
2015-12-02 18:28:35 +00:00
|
|
|
|
|
2015-12-03 01:22:18 +00:00
|
|
|
|
How to make a good progress bar
|
2015-12-17 20:00:20 +00:00
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
A good progress bar is a useful progress bar. To be useful, ``tqdm`` displays
|
2015-12-17 20:00:20 +00:00
|
|
|
|
statistics and uses smart algorithms to predict and automagically adapt to
|
|
|
|
|
a variety of use cases with no or minimal configuration.
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
However, there is one thing that ``tqdm`` cannot do: choose a pertinent
|
2015-12-03 01:27:32 +00:00
|
|
|
|
progress indicator. To display a useful progress bar, it is very important that
|
2016-01-25 08:28:59 +00:00
|
|
|
|
``tqdm`` is supplied with the most pertinent progress indicator.
|
|
|
|
|
This will reflect most accurately the current state of your program.
|
2015-12-03 01:27:32 +00:00
|
|
|
|
Usually, a good way is to preprocess quickly to first evaluate the total amount
|
|
|
|
|
of work to do before beginning the real processing.
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2016-01-25 08:28:59 +00:00
|
|
|
|
To illustrate the importance of a good progress indicator, take the
|
2015-12-03 01:22:18 +00:00
|
|
|
|
following example: you want to walk through all files of a directory and
|
2016-01-25 08:28:59 +00:00
|
|
|
|
process their contents with some external function:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
from tqdm import tqdm, trange
|
|
|
|
|
from time import sleep
|
|
|
|
|
|
|
|
|
|
def dosomething(buf):
|
|
|
|
|
"""Do something with the content of a file"""
|
|
|
|
|
sleep(0.01)
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def walkdir(folder):
|
|
|
|
|
"""Walk through each files in a directory"""
|
|
|
|
|
for dirpath, dirs, files in os.walk(folder):
|
|
|
|
|
for filename in files:
|
|
|
|
|
yield os.path.abspath(os.path.join(dirpath, filename))
|
|
|
|
|
|
|
|
|
|
def process_content_no_progress(inputpath, blocksize=1024):
|
|
|
|
|
for filepath in walkdir(inputpath):
|
|
|
|
|
with open(filepath, 'rb') as fh:
|
|
|
|
|
buf = 1
|
|
|
|
|
while (buf):
|
|
|
|
|
buf = fh.read(blocksize)
|
|
|
|
|
dosomething(buf)
|
|
|
|
|
|
2016-01-25 08:28:59 +00:00
|
|
|
|
``process_content_no_progress()`` does the job, but does not show
|
2015-12-03 01:22:18 +00:00
|
|
|
|
any information about the current progress, nor how long it will take.
|
|
|
|
|
|
|
|
|
|
To quickly fix that using ``tqdm``, we can use this naive approach:
|
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
def process_content_with_progress1(inputpath, blocksize=1024):
|
|
|
|
|
for filepath in tqdm(walkdir(inputpath), leave=True):
|
|
|
|
|
with open(filepath, 'rb') as fh:
|
|
|
|
|
buf = 1
|
|
|
|
|
while (buf):
|
|
|
|
|
buf = fh.read(blocksize)
|
|
|
|
|
dosomething(buf)
|
|
|
|
|
|
|
|
|
|
``process_content_with_progress1()`` will load ``tqdm()``, but since the
|
2015-12-17 20:00:20 +00:00
|
|
|
|
iterator does not provide any length (``os.walkdir()`` does not have a
|
|
|
|
|
``__len__()`` method for the total files count), there is only an indication
|
|
|
|
|
of the current and past program state, no prediction:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
``4it [00:03, 2.79it/s]``
|
|
|
|
|
|
|
|
|
|
The way to get predictive information is to know the total amount of work to be
|
2015-12-03 21:53:37 +00:00
|
|
|
|
done. Since ``os.walkdir()`` cannot give us this information, we need to
|
|
|
|
|
precompute this by ourselves:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
def process_content_with_progress2(inputpath, blocksize=1024):
|
|
|
|
|
# Preprocess the total files count
|
|
|
|
|
filecounter = 0
|
|
|
|
|
for dirpath, dirs, files in tqdm(os.walk(inputpath)):
|
|
|
|
|
for filename in files:
|
|
|
|
|
filecounter += 1
|
|
|
|
|
|
|
|
|
|
for filepath in tqdm(walkdir(inputpath), total=filecounter, leave=True):
|
|
|
|
|
with open(filepath, 'rb') as fh:
|
|
|
|
|
buf = 1
|
|
|
|
|
while (buf):
|
|
|
|
|
buf = fh.read(blocksize)
|
|
|
|
|
dosomething(buf)
|
|
|
|
|
|
|
|
|
|
``process_content_with_progress2()`` is better than the naive approach because
|
|
|
|
|
now we have predictive information:
|
|
|
|
|
|
2016-04-23 12:51:20 +00:00
|
|
|
|
50%|████████████\ \| 2/4 [00:00<00:00, 4.06it/s]
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
However, the progress is not smooth: it increments in steps, 1 step being
|
|
|
|
|
1 file processed. The problem is that we do not just walk through files tree,
|
2016-01-25 08:28:59 +00:00
|
|
|
|
but we process the files contents. Thus, if we stumble on one very large file
|
|
|
|
|
which takes a great deal more time to process than other smaller files,
|
|
|
|
|
the progress bar
|
|
|
|
|
will still considers that file is of equal processing weight.
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2015-12-17 20:00:20 +00:00
|
|
|
|
To fix this, we should use another indicator than the files count: the total
|
2015-12-03 01:22:18 +00:00
|
|
|
|
sum of all files sizes. This would be more pertinent since the data we
|
2015-12-17 20:00:20 +00:00
|
|
|
|
process is the files' content, so there is a direct relation between size and
|
2015-12-03 01:22:18 +00:00
|
|
|
|
content.
|
|
|
|
|
|
2015-12-17 20:00:20 +00:00
|
|
|
|
Below we implement this approach using a manually updated ``tqdm`` bar, where
|
|
|
|
|
``tqdm`` will work on size, while the ``for`` loop works on files paths:
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
.. code:: python
|
|
|
|
|
|
|
|
|
|
def process_content_with_progress3(inputpath, blocksize=1024):
|
|
|
|
|
# Preprocess the total files sizes
|
|
|
|
|
sizecounter = 0
|
|
|
|
|
for dirpath, dirs, files in tqdm(os.walk(inputpath)):
|
|
|
|
|
for filename in files:
|
|
|
|
|
fullpath = os.path.abspath(os.path.join(dirpath, filename))
|
2016-04-03 18:36:56 +00:00
|
|
|
|
sizecounter += os.stat(fullpath).st_size
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
# Load tqdm with size counter instead of files counter
|
|
|
|
|
with tqdm(total=sizecounter, leave=True, unit='B', unit_scale=True) as pbar:
|
|
|
|
|
for dirpath, dirs, files in os.walk(inputpath):
|
|
|
|
|
for filename in files:
|
|
|
|
|
fullpath = os.path.abspath(os.path.join(dirpath, filename))
|
|
|
|
|
with open(fullpath, 'rb') as fh:
|
|
|
|
|
buf = 1
|
|
|
|
|
while (buf):
|
|
|
|
|
buf = fh.read(blocksize)
|
|
|
|
|
dosomething(buf)
|
2015-12-03 19:06:45 +00:00
|
|
|
|
if buf: pbar.update(len(buf))
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
|
|
|
|
And here is the result: a much smoother progress bar with meaningful
|
|
|
|
|
predicted time and statistics:
|
|
|
|
|
|
2016-04-23 12:51:20 +00:00
|
|
|
|
47%|████████████\ \| 152K/321K [00:03<00:03, 46.2KB/s]
|
2015-12-03 01:22:18 +00:00
|
|
|
|
|
2016-01-25 08:28:59 +00:00
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
Contributions
|
|
|
|
|
-------------
|
|
|
|
|
|
2015-12-23 16:12:50 +00:00
|
|
|
|
To run the testing suite please make sure tox (https://testrun.org/tox/latest/)
|
2015-10-11 17:11:45 +00:00
|
|
|
|
is installed, then type ``tox`` from the command line.
|
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
Where ``tox`` is unavailable, a Makefile-like setup is
|
2015-12-03 02:11:31 +00:00
|
|
|
|
provided with the following command:
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
|
|
|
|
.. code:: sh
|
|
|
|
|
|
2015-12-03 02:11:31 +00:00
|
|
|
|
$ python setup.py make alltests
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-12-05 15:44:27 +00:00
|
|
|
|
To see all options, run:
|
|
|
|
|
|
|
|
|
|
.. code:: sh
|
|
|
|
|
|
|
|
|
|
$ python setup.py make
|
|
|
|
|
|
2016-04-03 18:36:56 +00:00
|
|
|
|
See the
|
|
|
|
|
`CONTRIBUTE <https://raw.githubusercontent.com/tqdm/tqdm/master/CONTRIBUTE>`__
|
2015-10-30 21:17:47 +00:00
|
|
|
|
file for more information.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-10-12 16:30:24 +00:00
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
License
|
|
|
|
|
-------
|
|
|
|
|
|
2016-02-29 23:29:44 +00:00
|
|
|
|
Multiple licences, mostly `MPLv2.0, MIT licences <https://raw.githubusercontent.com/tqdm/tqdm/master/LICENCE>`__.
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-10-12 16:30:24 +00:00
|
|
|
|
|
2015-10-11 17:11:45 +00:00
|
|
|
|
Authors
|
|
|
|
|
-------
|
|
|
|
|
|
|
|
|
|
- Casper da Costa-Luis (casperdcl)
|
|
|
|
|
- Stephen Larroque (lrq3000)
|
2015-10-18 21:11:35 +00:00
|
|
|
|
- Hadrien Mary (hadim)
|
|
|
|
|
- Noam Yorav-Raphael (noamraph)*
|
|
|
|
|
- Ivan Ivanov (obiwanus)
|
|
|
|
|
- Mikhail Korobov (kmike)
|
|
|
|
|
|
|
|
|
|
`*` Original author
|
2015-10-11 17:11:45 +00:00
|
|
|
|
|
2015-10-11 20:33:57 +00:00
|
|
|
|
.. |Logo| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/logo.png
|
2015-10-11 17:11:45 +00:00
|
|
|
|
.. |Build Status| image:: https://travis-ci.org/tqdm/tqdm.svg?branch=master
|
|
|
|
|
:target: https://travis-ci.org/tqdm/tqdm
|
|
|
|
|
.. |Coverage Status| image:: https://coveralls.io/repos/tqdm/tqdm/badge.svg
|
|
|
|
|
:target: https://coveralls.io/r/tqdm/tqdm
|
2015-11-28 02:10:08 +00:00
|
|
|
|
.. |Branch Coverage Status| image:: https://codecov.io/github/tqdm/tqdm/coverage.svg?branch=master
|
|
|
|
|
:target: https://codecov.io/github/tqdm/tqdm?branch=master
|
2015-10-12 10:20:06 +00:00
|
|
|
|
.. |PyPi Status| image:: https://img.shields.io/pypi/v/tqdm.svg
|
2015-10-12 10:22:07 +00:00
|
|
|
|
:target: https://pypi.python.org/pypi/tqdm
|
2015-10-12 10:20:06 +00:00
|
|
|
|
.. |PyPi Downloads| image:: https://img.shields.io/pypi/dm/tqdm.svg
|
2015-10-12 10:22:07 +00:00
|
|
|
|
:target: https://pypi.python.org/pypi/tqdm
|
2015-10-11 20:33:57 +00:00
|
|
|
|
.. |Screenshot| image:: https://raw.githubusercontent.com/tqdm/tqdm/master/tqdm.gif
|