mirror of https://github.com/explosion/spaCy.git
174 lines
5.5 KiB
Cython
174 lines
5.5 KiB
Cython
# cython: profile=True
|
|
from preshed.maps cimport PreshMap
|
|
from preshed.counter cimport PreshCounter
|
|
|
|
from .lexeme cimport *
|
|
cimport cython
|
|
|
|
import numpy as np
|
|
cimport numpy as np
|
|
|
|
POS = 0
|
|
ENTITY = 0
|
|
|
|
DEF PADDING = 5
|
|
|
|
|
|
cdef int bounds_check(int i, int length, int padding) except -1:
|
|
if (i + padding) < 0:
|
|
raise IndexError
|
|
if (i - padding) >= length:
|
|
raise IndexError
|
|
|
|
|
|
cdef class Tokens:
|
|
"""A sequence of references to Lexeme objects.
|
|
|
|
The Tokens class provides fast and memory-efficient access to lexical features,
|
|
and can efficiently export the data to a numpy array.
|
|
|
|
>>> from spacy.en import EN
|
|
>>> tokens = EN.tokenize('An example sentence.')
|
|
"""
|
|
def __init__(self, Language lang, string_length=0):
|
|
self.lang = lang
|
|
if string_length >= 3:
|
|
size = int(string_length / 3.0)
|
|
else:
|
|
size = 5
|
|
self.mem = Pool()
|
|
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
|
|
# However, we need to remember the true starting places, so that we can
|
|
# realloc.
|
|
data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
|
|
cdef int i
|
|
for i in range(size + (PADDING*2)):
|
|
data_start[i].lex = &EMPTY_LEXEME
|
|
self.data = data_start + PADDING
|
|
self.max_length = size
|
|
self.length = 0
|
|
|
|
def __getitem__(self, i):
|
|
bounds_check(i, self.length, PADDING)
|
|
return Token(self.lang, i, self.data[i].idx, self.data[i].pos,
|
|
self.data[i].lemma, self.data[i].head, self.data[i].dep_tag,
|
|
self.data[i].lex[0])
|
|
|
|
def __iter__(self):
|
|
for i in range(self.length):
|
|
yield self[i]
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
cdef int push_back(self, int idx, LexemeOrToken lex_or_tok) except -1:
|
|
if self.length == self.max_length:
|
|
self._realloc(self.length * 2)
|
|
cdef TokenC* t = &self.data[self.length]
|
|
if LexemeOrToken is TokenC_ptr:
|
|
t[0] = lex_or_tok[0]
|
|
else:
|
|
t.lex = lex_or_tok
|
|
self.length += 1
|
|
return idx + t.lex.length
|
|
|
|
@cython.boundscheck(False)
|
|
cpdef np.ndarray[long, ndim=2] get_array(self, list attr_ids):
|
|
cdef int i, j
|
|
cdef attr_id_t feature
|
|
cdef np.ndarray[long, ndim=2] output
|
|
output = np.ndarray(shape=(self.length, len(attr_ids)), dtype=int)
|
|
for i in range(self.length):
|
|
for j, feature in enumerate(attr_ids):
|
|
output[i, j] = get_attr(self.data[i].lex, feature)
|
|
return output
|
|
|
|
def count_by(self, attr_id_t attr_id):
|
|
cdef int i
|
|
cdef attr_t attr
|
|
cdef size_t count
|
|
|
|
cdef PreshCounter counts = PreshCounter(2 ** 8)
|
|
for i in range(self.length):
|
|
if attr_id == LEMMA:
|
|
attr = self.data[i].lemma
|
|
else:
|
|
attr = get_attr(self.data[i].lex, attr_id)
|
|
counts.inc(attr, 1)
|
|
return dict(counts)
|
|
|
|
def base_nps(self):
|
|
# Iterate backwards, looking for nouns, and if we're collecting, for an
|
|
# outside-NP word. We want greedy matching, so it's easier to find the noun.
|
|
cdef TokenC* token
|
|
cdef int end = -1
|
|
for i in range(self.length-1, -1, -1):
|
|
token = &self.data[i]
|
|
if end == -1:
|
|
if self.lang.is_base_np_end(token):
|
|
end = i
|
|
elif self.lang.is_outside_base_np(token):
|
|
yield i-1, end
|
|
end = -1
|
|
|
|
def _realloc(self, new_size):
|
|
self.max_length = new_size
|
|
n = new_size + (PADDING * 2)
|
|
# What we're storing is a "padded" array. We've jumped forward PADDING
|
|
# places, and are storing the pointer to that. This way, we can access
|
|
# words out-of-bounds, and get out-of-bounds markers.
|
|
# Now that we want to realloc, we need the address of the true start,
|
|
# so we jump the pointer back PADDING places.
|
|
cdef TokenC* data_start = self.data - PADDING
|
|
data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
|
|
self.data = data_start + PADDING
|
|
cdef int i
|
|
for i in range(self.length, self.max_length + PADDING):
|
|
self.data[i].lex = &EMPTY_LEXEME
|
|
|
|
|
|
@cython.freelist(64)
|
|
cdef class Token:
|
|
def __init__(self, Language lang, int i, int idx,
|
|
int pos, int lemma, int head, int dep_tag, dict lex):
|
|
self.lang = lang
|
|
self.idx = idx
|
|
self.pos = pos
|
|
self.i = i
|
|
self.head = head
|
|
self.dep_tag = dep_tag
|
|
self.id = lex['id']
|
|
|
|
self.lemma = lemma
|
|
|
|
self.cluster = lex['cluster']
|
|
self.length = lex['length']
|
|
self.postype = lex['pos_type']
|
|
self.sensetype = 0
|
|
self.sic = lex['sic']
|
|
self.norm = lex['dense']
|
|
self.shape = lex['shape']
|
|
self.suffix = lex['suffix']
|
|
self.prefix = lex['prefix']
|
|
|
|
self.prob = lex['prob']
|
|
self.flags = lex['flags']
|
|
|
|
property string:
|
|
def __get__(self):
|
|
if self.sic == 0:
|
|
return ''
|
|
cdef bytes utf8string = self.lang.lexicon.strings[self.sic]
|
|
return utf8string.decode('utf8')
|
|
|
|
property lemma:
|
|
def __get__(self):
|
|
if self.lemma == 0:
|
|
return self.string
|
|
cdef bytes utf8string = self.lang.lexicon.strings[self.lemma]
|
|
return utf8string.decode('utf8')
|
|
|
|
property pos:
|
|
def __get__(self):
|
|
return self.lang.pos_tagger.tag_names[self.pos]
|