spaCy/spacy/ml/_iob.py

93 lines
3.3 KiB
Python

"""Thinc layer to do simpler transition-based parsing, NER, etc."""
from typing import List, Tuple, Dict, Optional
from thinc.api import Ops, Model, with_array, softmax_activation, padded2list
from thinc.types import Padded, Ints1d, Ints3d, Floats2d, Floats3d
from ..tokens import Doc
def IOB() -> Model[Padded, Padded]:
return Model(
"biluo",
forward,
init=init,
dims={"nO": None},
attrs={"get_num_actions": get_num_actions}
)
def init(model, X: Optional[Padded]=None, Y: Optional[Padded]=None):
if X is not None and Y is not None:
if X.data.shape != Y.data.shape:
# TODO: Fix error
raise ValueError("Mismatched shapes (TODO: Fix message)")
model.set_dim("nO", X.data.shape[2])
elif X is not None:
model.set_dim("nO", X.data.shape[2])
elif Y is not None:
model.set_dim("nO", Y.data.shape[2])
elif model.get_dim("nO") is None:
raise ValueError("Dimension unset for BILUO: nO")
def forward(model: Model[Padded, Padded], Xp: Padded, is_train: bool):
n_labels = (model.get_dim("nO") - 1) // 2
n_tokens, n_docs, n_actions = Xp.data.shape
# At each timestep, we make a validity mask of shape (n_docs, n_actions)
# to indicate which actions are valid next for each sequence. To construct
# the mask, we have a state of shape (2, n_actions) and a validity table of
# shape (2, n_actions+1, n_actions). The first dimension of the state indicates
# whether it's the last token, the second dimension indicates the previous
# action, plus a special 'null action' for the first entry.
valid_transitions = _get_transition_table(model.ops, n_labels)
prev_actions = model.ops.alloc1i(n_docs)
# Initialize as though prev action was O
prev_actions.fill(n_actions - 1)
Y = model.ops.alloc3f(*Xp.data.shape)
masks = model.ops.alloc3f(*Y.shape)
for t in range(Xp.data.shape[0]):
masks[t] = valid_transitions[prev_actions]
# Don't train the out-of-bounds sequences.
masks[t, Xp.size_at_t[t]:] = 0
# Valid actions get 0*10e8, invalid get -1*10e8
Y[t] = Xp.data[t] + ((masks[t]-1) * 10e8)
prev_actions = Y[t].argmax(axis=-1)
def backprop_biluo(dY: Padded) -> Padded:
# Masking the gradient seems to do poorly here. But why?
#dY.data *= masks
return dY
return Padded(Y, Xp.size_at_t, Xp.lengths, Xp.indices), backprop_biluo
def get_num_actions(n_labels: int) -> int:
# One BEGIN action per label
# One IN action per label
# One LAST action per label
# One UNIT action per label
# One OUT action
return n_labels * 2 + 1
def _get_transition_table(
ops: Ops, n_labels: int, _cache: Dict[int, Floats3d] = {}
) -> Floats3d:
n_actions = get_num_actions(n_labels)
if n_actions in _cache:
return ops.asarray(_cache[n_actions])
table = ops.alloc2f(n_actions, n_actions)
B_start, B_end = (0, n_labels)
I_start, I_end = (B_end, B_end + n_labels)
O_action = I_end
B_range = ops.xp.arange(B_start, B_end)
I_range = ops.xp.arange(I_start, I_end)
# B and O are always valid
table[:, B_start : B_end] = 1
table[:, O_action] = 1
# I can only follow a matching B
table[B_range, I_range] = 1
_cache[n_actions] = table
return table