mirror of https://github.com/explosion/spaCy.git
75 lines
2.3 KiB
Python
75 lines
2.3 KiB
Python
from __future__ import print_function, unicode_literals, division
|
|
import io
|
|
import bz2
|
|
import logging
|
|
from toolz import partition
|
|
from os import path
|
|
import re
|
|
|
|
import spacy.en
|
|
from spacy.tokens import Doc
|
|
|
|
from joblib import Parallel, delayed
|
|
import plac
|
|
import ujson
|
|
|
|
|
|
def parallelize(func, iterator, n_jobs, extra, backend='multiprocessing'):
|
|
extra = tuple(extra)
|
|
return Parallel(n_jobs=n_jobs, backend=backend)(delayed(func)(*(item + extra))
|
|
for item in iterator)
|
|
|
|
|
|
def iter_comments(loc):
|
|
with bz2.BZ2File(loc) as file_:
|
|
for i, line in enumerate(file_):
|
|
yield ujson.loads(line)['body']
|
|
|
|
|
|
pre_format_re = re.compile(r'^[\`\*\~]')
|
|
post_format_re = re.compile(r'[\`\*\~]$')
|
|
url_re = re.compile(r'\[([^]]+)\]\(%%URL\)')
|
|
link_re = re.compile(r'\[([^]]+)\]\(https?://[^\)]+\)')
|
|
def strip_meta(text):
|
|
text = link_re.sub(r'\1', text)
|
|
text = text.replace('>', '>').replace('<', '<')
|
|
text = pre_format_re.sub('', text)
|
|
text = post_format_re.sub('', text)
|
|
return text.strip()
|
|
|
|
|
|
def save_parses(batch_id, input_, out_dir, n_threads, batch_size):
|
|
out_loc = path.join(out_dir, '%d.bin' % batch_id)
|
|
if path.exists(out_loc):
|
|
return None
|
|
print('Batch', batch_id)
|
|
nlp = spacy.en.English()
|
|
nlp.matcher = None
|
|
with open(out_loc, 'wb') as file_:
|
|
texts = (strip_meta(text) for text in input_)
|
|
texts = (text for text in texts if text.strip())
|
|
for doc in nlp.pipe(texts, batch_size=batch_size, n_threads=n_threads):
|
|
file_.write(doc.to_bytes())
|
|
|
|
@plac.annotations(
|
|
in_loc=("Location of input file"),
|
|
out_dir=("Location of input file"),
|
|
n_process=("Number of processes", "option", "p", int),
|
|
n_thread=("Number of threads per process", "option", "t", int),
|
|
batch_size=("Number of texts to accumulate in a buffer", "option", "b", int)
|
|
)
|
|
def main(in_loc, out_dir, n_process=1, n_thread=4):
|
|
if not path.exists(out_dir):
|
|
path.join(out_dir)
|
|
if n_process >= 2:
|
|
texts = partition(200000, iter_comments(in_loc))
|
|
parallelize(save_parses, enumerate(texts), n_process, [out_dir, n_thread, batch_size],
|
|
backend='multiprocessing')
|
|
else:
|
|
save_parses(0, iter_comments(in_loc), out_dir, n_thread, batch_size)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|